Menu Close

Category: None

In-a-convex-quadrilateral-ABCD-if-sinA-cosB-then-find-the-range-of-S-3sinA-4sinB-5-2-sinC-5-2-sinD-

Question Number 203970 by CrispyXYZ last updated on 03/Feb/24 $$\mathrm{In}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral}\:{ABCD}\:,\: \\ $$$$\mathrm{if}\:\mathrm{sin}{A}\:=\:\mathrm{cos}{B},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of} \\ $$$${S}\:=\:\mathrm{3sin}{A}\:+\:\mathrm{4sin}{B}\:+\:\mathrm{5}\sqrt{\mathrm{2}}\mathrm{sin}{C}\:+\:\mathrm{5}\sqrt{\mathrm{2}}\mathrm{sin}{D}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

If-a-2-a-2-0-and-x-2-a-6-2a-4-a-2-then-find-x-IIT-JEE-based-question-Find-sol-n-

Question Number 203941 by Panav last updated on 02/Feb/24 $$\boldsymbol{{If}}\:\boldsymbol{{a}}^{\mathrm{2}\:} −\boldsymbol{{a}}+\mathrm{2}=\mathrm{0}\:\boldsymbol{{and}}\:\boldsymbol{{x}}^{\mathrm{2}} =\boldsymbol{{a}}^{\mathrm{6}} +\mathrm{2}\boldsymbol{{a}}^{\mathrm{4}} +\boldsymbol{{a}}^{\mathrm{2}} \:\boldsymbol{{then}}\:\boldsymbol{{find}}\:\boldsymbol{{x}}? \\ $$$$\boldsymbol{{IIT}}−\boldsymbol{{JEE}}\:\boldsymbol{{based}}\:\boldsymbol{{question}}.\:\boldsymbol{{Find}}\:\boldsymbol{{sol}}^{\boldsymbol{{n}}} . \\ $$ Answered by Rasheed.Sindhi last updated…

if-y-1-x-2-x-3-x-n-x-y-

Question Number 203910 by Davidtim last updated on 01/Feb/24 $${if}\:\:\:{y}=\left(\mathrm{1}−{x}\right)\left(\mathrm{2}−{x}\right)\left(\mathrm{3}−{x}\right)\centerdot\centerdot\centerdot\left({n}−{x}\right) \\ $$$${y}^{'} =? \\ $$ Answered by mr W last updated on 01/Feb/24 $${y}=\underset{{k}=\mathrm{1}} {\overset{{n}}…

Hmmm-I-have-one-Question-f-t-C-C-mean-can-derivate-times-where-t-R-Can-f-t-integrable-when-S-R-Q-Ex-integral-1-e-ln-z-dz-S-1-e-But-Except-Q-in-set-S-like-

Question Number 203875 by MathedUp last updated on 31/Jan/24 $$\mathrm{Hmmm}…..\:\mathrm{I}\:\mathrm{have}\:\mathrm{one}\:\mathrm{Question}. \\ $$$${f}\left({t}\right)\in{C}^{\infty} \:,\:\left\{{C}_{\:} ^{\boldsymbol{\alpha}} \:\mathrm{mean}\:\mathrm{can}\:\mathrm{derivate}\:\boldsymbol{\alpha}\:\mathrm{times}.\right\} \\ $$$$\mathrm{where}\:{t}\in\mathbb{R}\:,\:\mathrm{Can}\:{f}\left({t}\right)\:\:\mathrm{integrable}\:\mathrm{when}\:{S}\in\mathbb{R}\backslash\left\{\mathbb{Q}\right\}?? \\ $$$$\mathrm{Ex}.\:\mathrm{integral}\:\int_{\mathrm{1}} ^{\:{e}} \:\mathrm{ln}\left({z}\right)\mathrm{d}{z}\:{S}\in\left[\mathrm{1},{e}\right]\: \\ $$$$\mathrm{But}\:\mathrm{Except}\:\mathbb{Q}\:\mathrm{in}\:\mathrm{set}\:{S}\:\mathrm{like}..\:{S}^{'} ={S}\backslash\left\{\mathbb{Q}\right\}\: \\…

Question-203822

Question Number 203822 by 073 last updated on 29/Jan/24 Answered by esmaeil last updated on 29/Jan/24 $$\mathrm{1}:\frac{\mathrm{1}}{{x}}={p}\overset{{x}\rightarrow\infty\rightarrow{p}\rightarrow\mathrm{0}} {\rightarrow}\left[\frac{{x}+\mathrm{1}}{{x}}\right]=\left[{p}+\mathrm{1}\right)=\mathrm{1}\rightarrow \\ $$$$\Omega=\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sinp}}{{p}}=\mathrm{1} \\ $$ Answered by…