Menu Close

Category: None

A-stone-is-thrown-into-a-circular-pond-of-radius-1m-Suppose-the-stone-falls-uniformly-at-random-on-the-area-of-the-pond-What-will-be-the-expected-distance-od-the-stone-from-the-centre-of-the-pond-a-

Question Number 37168 by NECx last updated on 10/Jun/18 $${A}\:{stone}\:{is}\:{thrown}\:{into}\:{a}\:{circular} \\ $$$${pond}\:{of}\:{radius}\:\mathrm{1}{m}.{Suppose}\:{the} \\ $$$${stone}\:{falls}\:{uniformly}\:{at}\:{random} \\ $$$${on}\:{the}\:{area}\:{of}\:{the}\:{pond}.{What} \\ $$$${will}\:{be}\:{the}\:{expected}\:{distance}\:{od} \\ $$$${the}\:{stone}\:{from}\:{the}\:{centre}\:{of}\:{the} \\ $$$${pond}. \\ $$$$ \\…

x-1-x-6-dx-

Question Number 168231 by naka3546 last updated on 06/Apr/22 $$\int\:\:{x}\:\sqrt{\mathrm{1}−{x}^{\mathrm{6}} }\:\:{dx}\:\:=\:\:? \\ $$ Commented by MJS_new last updated on 06/Apr/22 $$\mathrm{first}\:\mathrm{step} \\ $$$$\int{x}\sqrt{\mathrm{1}−{x}^{\mathrm{6}} }{dx}= \\…

Question-102644

Question Number 102644 by otchereabdullai@gmail.com last updated on 10/Jul/20 Answered by Rasheed.Sindhi last updated on 10/Jul/20 $${x}:\:{tricycles},{y}:{taxicabs} \\ $$$${x}+{y}=\mathrm{20} \\ $$$$\mathrm{2}{x}+\mathrm{4}{y}=\mathrm{66} \\ $$$$\mathrm{2}{x}+\mathrm{2}{y}=\mathrm{40} \\ $$$$\mathrm{2}{x}+\mathrm{4}{y}=\mathrm{66}…

prove-that-cos-sin-2-cosec-sin-2-2-

Question Number 37110 by mondodotto@gmail.com last updated on 09/Jun/18 $$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}} \\ $$$$\left(\boldsymbol{\mathrm{cos}\vartheta}−\boldsymbol{\mathrm{sin}\vartheta}\right)^{\mathrm{2}} +\left(\boldsymbol{\mathrm{cosec}\vartheta}+\boldsymbol{\mathrm{sin}\vartheta}\right)^{\mathrm{2}} =\mathrm{2} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 09/Jun/18 $${to}\:{make}\:{it}\:{true}\:{replace}\:{cosec}\theta\:{by}\:{cos}\theta \\…

Question-102642

Question Number 102642 by otchereabdullai@gmail.com last updated on 10/Jul/20 Answered by som(math1967) last updated on 10/Jul/20 $$\angle\mathrm{SRQ}=\angle\mathrm{RTS}=\mathrm{28} \\ $$$$\mathrm{x}=\mathrm{180}−\angle\mathrm{VRS}=\angle\mathrm{VRM}+\angle\mathrm{SRQ} \\ $$$$=\mathrm{46}+\mathrm{28}=\mathrm{74}°\mathrm{ans} \\ $$ Commented by…