Menu Close

Category: None

Question-167120

Question Number 167120 by DAVONG last updated on 07/Mar/22 Answered by TheSupreme last updated on 07/Mar/22 $$\frac{{sin}\left(\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−{cos}\left({x}\right)\right)\right)}{\mathrm{1}−{cos}\left({x}\right)}=\frac{\pi}{\mathrm{2}}\frac{\mathrm{1}−{cos}\left({x}\right)}{\mathrm{1}−{cos}\left({x}\right)}=\frac{\pi}{\mathrm{2}} \\ $$ Answered by Mathspace last updated on…

Question-36024

Question Number 36024 by bshahid010@gmail.com last updated on 27/May/18 Commented by abdo mathsup 649 cc last updated on 27/May/18 $${let}\:{use}\:{the}\:{changement}\:\:{x}\:=\mathrm{1}+{t}\:{so} \\ $$$$\frac{{m}}{{x}^{{m}} \:−\mathrm{1}}\:−\frac{{p}}{{x}^{{p}} \:−\mathrm{1}}\:=\frac{{m}}{\left(\mathrm{1}+{t}\right)^{{m}} \:−\mathrm{1}}\:−\:\frac{{p}}{\left(\mathrm{1}+{t}\right)^{{p}}…

Question-101551

Question Number 101551 by mhmd last updated on 03/Jul/20 Answered by bobhans last updated on 03/Jul/20 $$\left.\left(\mathrm{Q2}\right)\:\mathrm{The}\:\mathrm{area}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\underset{\mathrm{0}} {\overset{{x}} {\int}}\:{dy}\:{dx}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\left({y}\right)\right]_{\mathrm{0}} ^{{x}} \:\:{dx}…

Dear-Joint-Users-please-use-answer-instead-of-comment-when-answering-a-question-it-s-impossible-to-find-unanswered-questions-at-the-moment-it-makes-no-sense-to-search-for-unanswered-questions-

Question Number 101523 by MJS last updated on 03/Jul/20 $$\mathrm{Dear}\:\mathrm{Joint}\:\mathrm{Users}, \\ $$$$\mathrm{please}\:\mathrm{use}\:“\mathrm{answer}''\:\mathrm{instead}\:\mathrm{of}\:“\mathrm{comment}'' \\ $$$$\mathrm{when}\:\mathrm{answering}\:\mathrm{a}\:\mathrm{question}.\:\mathrm{it}'\mathrm{s}\:\mathrm{impossible} \\ $$$$\mathrm{to}\:\mathrm{find}\:\mathrm{unanswered}\:\mathrm{questions}\:\mathrm{at}\:\mathrm{the}\:\mathrm{moment}. \\ $$$$\mathrm{it}\:\mathrm{makes}\:\mathrm{no}\:\mathrm{sense}\:\mathrm{to}\:\mathrm{search}\:\mathrm{for}\:“\mathrm{unanswered} \\ $$$$\mathrm{questions}''\:\mathrm{anymore}.\:\mathrm{maybe}\:\mathrm{we}\:\mathrm{need}\:\mathrm{a}\:\mathrm{search} \\ $$$$\mathrm{function}\:\mathrm{for}\:“\mathrm{uncommented}\:\mathrm{questions}''\:\mathrm{soon}. \\ $$$$\mathrm{Thank}\:\mathrm{you} \\…

differentiate-from-the-first-principle-y-1-x-

Question Number 35933 by mondodotto@gmail.com last updated on 26/May/18 $$\boldsymbol{\mathrm{differentiate}}\:\boldsymbol{\mathrm{from}} \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{principle}} \\ $$$$\boldsymbol{\mathrm{y}}=\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{x}}}} \\ $$ Answered by ajfour last updated on 26/May/18 $${dy}=\frac{\mathrm{1}}{\:\sqrt{{x}+{dx}}}−\frac{\mathrm{1}}{\:\sqrt{{x}}} \\…