Question Number 203270 by MrGHK last updated on 13/Jan/24 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{last}}\:\mathrm{4}\:\boldsymbol{\mathrm{digits}}\:\boldsymbol{\mathrm{of}}\:\mathrm{2024}^{\mathrm{2023}} \\ $$ Answered by Frix last updated on 14/Jan/24 $$\mathrm{Last}\:\mathrm{4}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{2024}^{{n}} \\ $$$${n}=\mathrm{1}\:\mathrm{2024} \\ $$$$\mathrm{Then}\:\mathrm{a}\:\mathrm{loop}\:\mathrm{of}\:\mathrm{length}\:\mathrm{50} \\…
Question Number 203234 by naka3546 last updated on 13/Jan/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 203199 by MathedUp last updated on 12/Jan/24 $$\mathrm{Let}'{s}\:\mathrm{define}\:\mathrm{linear}\:\mathrm{Operator}\:\boldsymbol{\mathcal{L}}\:\mathrm{as}\:\boldsymbol{\mathcal{L}}=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{st}} \centerdot \\ $$$$\boldsymbol{\mathcal{L}}\left\{{W}\left({t}\right)\right\}=??? \\ $$$${W}\left({t}\right)\:\mathrm{is}\:\mathrm{inverse}\:\mathrm{function}\:\mathrm{of}\:{y}\left({t}\right)={te}^{{t}} \:,\:{t}\in\left[−\frac{\mathrm{1}}{{e}},\infty\right) \\ $$ Commented by shunmisaki007 last updated…
Question Number 203192 by MrGHK last updated on 12/Jan/24 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{last}}\:\boldsymbol{\mathrm{four}}\:\boldsymbol{\mathrm{digits}}\:\boldsymbol{\mathrm{of}}\:\mathrm{2022}^{\mathrm{2023}} +\mathrm{2023}^{\mathrm{2022}} \\ $$ Answered by AST last updated on 12/Jan/24 $${x}=\mathrm{2022}^{\mathrm{2023}} +\mathrm{2023}^{\mathrm{2022}} \overset{\mathrm{16}} {\equiv}\mathrm{6}^{\mathrm{2023}} +\mathrm{7}^{\mathrm{2022}}…
Question Number 203166 by sulaymonnorboyev140 last updated on 11/Jan/24 $$ \\ $$ Answered by MathematicalUser2357 last updated on 15/Jan/24 $$\mathrm{0} \\ $$ Terms of Service…
Question Number 203151 by sonukgindia last updated on 11/Jan/24 Answered by mr W last updated on 11/Jan/24 Commented by mr W last updated on 11/Jan/24…
Question Number 203111 by lazyboy last updated on 10/Jan/24 $${please}\:{solve}\:{it} \\ $$$$\int\left[{x}^{\frac{{x}}{\mathrm{2}}} +{e}^{{xlnx}} +\frac{\left(\Pi+\sqrt{{x}}{ln}\left({x}\right)\right)^{\mathrm{2}} }{\mathrm{2}{ln}\mathrm{2}\sqrt{{x}−{e}^{{x}} \mathrm{sin}\:{x}}}\right]^{\mathrm{2}} {dx}=? \\ $$ Commented by lazyboy last updated on…
Question Number 203127 by Skabetix last updated on 10/Jan/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 203045 by MathematicalUser2357 last updated on 08/Jan/24 $${very}\:{old}\:{q}\:{Q}.\mathrm{2} \\ $$ Commented by lazyboy last updated on 11/Jan/24 $${how}\:{can}\:{find}\:{Q}.\mathrm{2} \\ $$ Terms of Service…
Question Number 203000 by sonukgindia last updated on 07/Jan/24 Answered by SEKRET last updated on 07/Jan/24 $$\mathrm{3};\mathrm{6} \\ $$ Answered by Rasheed.Sindhi last updated on…