Question Number 166539 by daus last updated on 22/Feb/22 $${solve}\:{the}\:{equation} \\ $$$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\mathrm{6}{x}^{\mathrm{2}} +{y}\: \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}={y}^{\mathrm{2}} \\ $$ Commented by cortano1 last updated…
Question Number 166516 by naka3546 last updated on 21/Feb/22 $$\mathrm{Determine}\:\:\mathrm{the}\:\:\mathrm{formula}\:\:\mathrm{of}\:\:\mathrm{this}\:\:\mathrm{expression} \\ $$$$\:\:\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\left({n}−{k}\right)!\left({n}+{k}\right)!}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 100980 by bachamohamed last updated on 29/Jun/20 $$\:\:\:\:{prove}\:{that}\:\:\int_{−\infty} ^{+\infty} \left(\frac{\mathrm{1}}{\mathrm{1}+\left(\boldsymbol{{x}}+\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)\right)^{\mathrm{2}} }\boldsymbol{{dx}}\right)=\boldsymbol{\pi}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 100968 by bachamohamed last updated on 29/Jun/20 $$\:\:\:\:\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\mathrm{x}+\mathrm{k}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{k}+\mathrm{1}} }} =?\:\:\:\:\:\:\mathrm{x}>\mathrm{0}\: \\ $$ Answered by mathmax by abdo last updated on 29/Jun/20…
Question Number 166511 by mkam last updated on 21/Feb/22 $${is}\:{the}\:{function}\:{f}\left({x}\right)\:=\:{tan}^{−\mathrm{1}} \left({x}\right)\:+\:{tan}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)\:+\:{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)\:+\:…..\: \\ $$$${converge}\:{or}\:{diverge}\:? \\ $$$$ \\ $$ Answered by alephzero last updated on…
Question Number 100966 by mhmd last updated on 29/Jun/20 $${find}\:{the}\:{fourier}\:{series}\:{of}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\begin{cases}{{x}\:\:\:\:\:\:\:\:\:−\mathrm{2}\leqslant{x}\leqslant\mathrm{0}}\\{{x}+\mathrm{2}\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}}\end{cases}\:\:\:\:\:\:{help}\:{me}\:{sir}\:? \\ $$ Commented by bobhans last updated on 29/Jun/20 $$\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{a}_{\mathrm{o}} }{\mathrm{2}}\:+\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{b}_{\mathrm{n}}…
Question Number 35412 by mondodotto@gmail.com last updated on 18/May/18 $$\boldsymbol{\mathrm{evaluate}}\:\int\sqrt{\left(\boldsymbol{\mathrm{t}}^{\mathrm{2}} +\mathrm{1}+\frac{\mathrm{3}}{\mathrm{4}}\boldsymbol{\mathrm{t}}\right)}\:\boldsymbol{\mathrm{dt}} \\ $$ Commented by prof Abdo imad last updated on 19/May/18 $${let}\:{put}\:{I}\:=\:\int\:\:\sqrt{{t}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}{t}\:+\mathrm{1}}\:{dt} \\…
Question Number 100947 by bachamohamed last updated on 29/Jun/20 $$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+\sqrt{\mathrm{5}+…..\infty}}}}}=? \\ $$ Commented by bachamohamed last updated on 29/Jun/20 $$\mathrm{way}\:\mathrm{how}\:?\:\mathrm{solve}\:\mathrm{that} \\ $$ Commented by Dwaipayan…
Question Number 100912 by mhmd last updated on 29/Jun/20 $${find}\:{the}\:{fourier}\:{series}\:{of}\:{the}\:{function}\:\begin{cases}{{x}\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\leqslant{x}\leqslant\mathrm{0}}\\{{x}+\mathrm{2}\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}}\end{cases}\:\:\:\:\:\: \\ $$$${help}\:{me}\:{sir}\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 166448 by SANOGO last updated on 20/Feb/22 $${montrer}\:{q}\:\:\forall{n}\epsilon{N} \\ $$$${n}^{\mathrm{2}} +{n}\:{est}\:{divisible}\:{par}\:\mathrm{30} \\ $$ Commented by MJS_new last updated on 20/Feb/22 $$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{true} \\ $$…