Menu Close

Category: None

Question-166321

Question Number 166321 by mathls last updated on 18/Feb/22 Answered by alephzero last updated on 19/Feb/22 $${x}\:−\:{table} \\ $$$${y}\:−\:{cat} \\ $$$${z}\:−\:{turte} \\ $$$$\Rightarrow\:\begin{cases}{{y}+{x}−{z}\:=\:\mathrm{170}}\\{{z}+{x}−{y}\:=\:\mathrm{130}}\end{cases} \\ $$$${y}\:=\:\mathrm{170}−{x}+{z}…

sho-that-0-1-2-is-a-point-of-symetry-for-the-curve-f-x-x-1-1-e-x-Please-make-a-reference-to-a-book-i-can-understand-centre-of-symmetry-of-rational-functions-and-functions-like-this-

Question Number 100771 by Rio Michael last updated on 28/Jun/20 $$\:\mathrm{sho}\:\mathrm{that}\:\:\left(\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{point}\:\mathrm{of}\:\mathrm{symetry}\:\mathrm{for}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\:{f}\left({x}\right)\:=\:{x}\:+\frac{\mathrm{1}}{\mathrm{1}−{e}^{{x}} } \\ $$$$\mathrm{Please}\:\mathrm{make}\:\mathrm{a}\:\mathrm{reference}\:\mathrm{to}\:\mathrm{a}\:\mathrm{book}\:\mathrm{i}\:\mathrm{can}\:\mathrm{understand} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{symmetry}\:\mathrm{of}\:\mathrm{rational}\:\mathrm{functions}\:\mathrm{and}\:\mathrm{functions} \\ $$$$\mathrm{like}\:\mathrm{this} \\ $$ Commented by abdomathmax…

Question-166284

Question Number 166284 by daus last updated on 17/Feb/22 Commented by mr W last updated on 17/Feb/22 $${OC}\:{can}\:{be}\:{any}\:{value}\:{between}\:\mathrm{0}\:{and}\:\mathrm{13}. \\ $$$${something}\:{is}\:{missing}\:{in}\:{the}\:{question}. \\ $$ Terms of Service…

Solve-for-the-exact-value-of-0-sin-x-2-x-2-dx-

Question Number 166280 by Eulerian last updated on 17/Feb/22 $$\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{0}} ^{\:\infty} \mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{−\mathrm{2}} \right)\:\mathrm{dx} \\ $$ Answered by phanphuoc last updated on 17/Feb/22 $${put}\:{x}=\mathrm{1}/{t}\rightarrow{dx}=−{dt}/{t}^{\mathrm{2}} \\…

2-5-35-6-30-15-90-255-

Question Number 100743 by EquationMaker2305 last updated on 28/Jun/20 $$\sqrt{\frac{\mathrm{2}+\mathrm{5}}{\mathrm{35}}+\mathrm{6}}+\mathrm{30}×\frac{\mathrm{15}+\mathrm{90}}{\mathrm{255}} \\ $$ Answered by mahdi last updated on 28/Jun/20 $$\sqrt{\frac{\mathrm{2}+\mathrm{5}}{\mathrm{35}}+\mathrm{6}}+\mathrm{30}×\frac{\mathrm{15}+\mathrm{90}}{\mathrm{225}}= \\ $$$$\left(\sqrt{\frac{\mathrm{7}}{\mathrm{35}}+\mathrm{6}}\right)+\left(\mathrm{30}×\frac{\mathrm{105}}{\mathrm{225}}\right)=\sqrt{\frac{\mathrm{31}}{\mathrm{5}}}+\frac{\mathrm{70}}{\mathrm{3}}= \\ $$ Terms…