Question Number 34792 by mondodotto@gmail.com last updated on 11/May/18 $$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{{x}} \\ $$$$\mathrm{4}\boldsymbol{{x}}=\mathrm{2}^{\boldsymbol{{x}}} \\ $$ Answered by Joel579 last updated on 11/May/18 Commented by Joel579 last…
Question Number 100317 by pticantor last updated on 26/Jun/20 $$\boldsymbol{{please}}\:\boldsymbol{{help}}\:\boldsymbol{{me}}\:\boldsymbol{{to}}\:\boldsymbol{{solve}}\:\boldsymbol{{this}}! \\ $$$$ \\ $$$$\:\:\:\:\:\begin{cases}{\boldsymbol{{xln}}\mathrm{3}−\boldsymbol{{e}}^{\mathrm{3}\boldsymbol{{yln}}\mathrm{3}} =\mathrm{0}}\\{\boldsymbol{{lnx}}−\mathrm{2}\boldsymbol{{lny}}=\mathrm{1}}\end{cases} \\ $$$$ \\ $$ Answered by MJS last updated on…
Question Number 100311 by mathocean1 last updated on 26/Jun/20 Answered by mathmax by abdo last updated on 26/Jun/20 $$\mathrm{M}\left(\mathrm{f},\mathrm{B}\right)\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{1}\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\:\Rightarrow\mathrm{f}\left(\mathrm{i}\right)\:=\mathrm{i}+\mathrm{j}\:\mathrm{and}\:\mathrm{f}\left(\mathrm{j}\right)\:=\mathrm{2i} \\ $$$$\mathrm{g}\:=\mathrm{f}+\mathrm{id}_{\mathrm{E}} \:\:\:\mathrm{and}\:\mathrm{h}\:=\mathrm{f}−\mathrm{2id}_{\mathrm{E}} \:\Rightarrow\mathrm{g}\left(\mathrm{u}\right)\:=\mathrm{f}\left(\mathrm{u}\right)+\mathrm{u}\:\:\mathrm{and}\:\mathrm{h}\left(\mathrm{u}\right)=\mathrm{f}\left(\mathrm{u}\right)−\mathrm{2u}\:\Rightarrow \\ $$$$\mathrm{g}\left(\mathrm{i}\right)\:=\mathrm{f}\left(\mathrm{i}\right)+\mathrm{i}\:=\mathrm{2i}+\mathrm{j}\:\:\mathrm{and}\:\:\mathrm{g}\left(\mathrm{j}\right)\:=\mathrm{f}\left(\mathrm{j}\right)+\mathrm{j}\:=\mathrm{2i}+\mathrm{j}\:\Rightarrow…
Question Number 100310 by Tinku Tara last updated on 26/Jun/20 $$\mathrm{Version}\:\mathrm{2}.\mathrm{085}\:\mathrm{is}\:\mathrm{now}\:\mathrm{available}\:\mathrm{on} \\ $$$$\mathrm{playstore}.\:\mathrm{Please}\:\mathrm{update}. \\ $$ Commented by Tinku Tara last updated on 26/Jun/20 $$\mathrm{You}\:\mathrm{have}\:\mathrm{made}\:\mathrm{this}\:\mathrm{request}\:\mathrm{before}. \\…
Question Number 100304 by Algoritm last updated on 26/Jun/20 Commented by PRITHWISH SEN 2 last updated on 26/Jun/20 $$\mathrm{t}_{\mathrm{n}} =\frac{\mathrm{n}}{\left(\mathrm{n}+\mathrm{1}\right)!}\:=\:\frac{\mathrm{1}}{\mathrm{n}!}\:−\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}\: \\ $$$$\mathrm{and}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{telescopic}\:\mathrm{series} \\ $$ Commented…
Question Number 165834 by SANOGO last updated on 09/Feb/22 $${l}'{expression}\:{de}\:{f}\left({x}\right) \\ $$$$\left.\underset{{n}={o}} {\overset{+{oo}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{x}^{{n}} \:\:\:\:{x}\epsilon\right]{o},\mathrm{1}\left[\right. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 100290 by Harasanemanabrandah last updated on 26/Jun/20 Commented by Rasheed.Sindhi last updated on 26/Jun/20 $$\:^{\bullet} {If}\:\:{n}\:{is}\:{multiple}\:{of}\:\mathrm{3}\:\:{then}\:\mathrm{3}^{{n}} +{n}^{\mathrm{3}} \: \\ $$$${is}\:{obviously}\:\:{composite}\:\left(\mathrm{3}\:\mid\:\mathrm{3}^{{n}} +{n}^{\mathrm{3}} \right) \\…
Question Number 100285 by DGmichael last updated on 26/Jun/20 Answered by mathmax by abdo last updated on 26/Jun/20 $$\mathrm{p}\:=\frac{\mathrm{1}−\mathrm{a}^{\mathrm{2}^{\mathrm{n}+\mathrm{1}} } }{\mathrm{1}−\mathrm{a}^{\mathrm{2}} }\:\:\:\:\mathrm{we}\:\mathrm{can}\:\mathrm{prove}\:\mathrm{this}\:\mathrm{by}\:\mathrm{recurrence}\:\:\left(\mathrm{a}^{\mathrm{2}} \:\neq\mathrm{1}\right) \\ $$…
Question Number 165815 by SANOGO last updated on 08/Feb/22 $${deteminer}\:{l}'{expression}\:{de}\:{g}\left({x}\right) \\ $$$${g}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{+{oo}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{x}^{{n}} \\ $$ Answered by puissant last updated on 08/Feb/22 $${g}\left({x}\right)=−{ln}\left(\mathrm{1}+{x}\right)={ln}\left(\frac{\mathrm{1}}{\mathrm{1}+{x}}\right)..…
Question Number 165808 by ZiYangLee last updated on 08/Feb/22 $$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{function}? \\ $$$$\mathrm{A}.\:{f}_{\mathrm{1}} \left({x}\right)=\:\frac{\mathrm{sin}\:{x}}{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }\:\:\:\:\:\:\:\:\:\mathrm{B}.\:{f}_{\mathrm{2}} \left({x}\right)=\:\frac{\mathrm{cos}\:{x}}{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} } \\ $$$$\mathrm{C}.\:{f}_{\mathrm{3}} \left({x}\right)=\mathrm{log}_{\mathrm{10}} \left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$\mathrm{D}.\:{f}_{\mathrm{4}}…