Menu Close

Category: None

Question-201654

Question Number 201654 by mokys last updated on 10/Dec/23 Answered by aleks041103 last updated on 10/Dec/23 $${First}\:{part}: \\ $$$${M}=\begin{pmatrix}{\mathrm{4}}&{\mathrm{3}}\\{\mathrm{1}}&{−\mathrm{2}}\end{pmatrix}\: \\ $$$${eigenvals}: \\ $$$${det}\left({M}−{xI}\right)=\begin{vmatrix}{\mathrm{4}−{x}}&{\mathrm{3}}\\{\mathrm{1}}&{−\mathrm{2}−{x}}\end{vmatrix}=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\mathrm{4}\right)\left({x}+\mathrm{2}\right)−\mathrm{3}=\mathrm{0}…

Starting-from-substituting-z-x-iy-Identify-the-maximal-region-within-which-f-z-is-analytic-f-z-1-z-z-1-Note-Do-not-start-by-just-differentiating-f-z-Start-by-doing-a-substitution-of-x-

Question Number 201683 by aurpeyz last updated on 10/Dec/23 $${Starting}\:{from}\:{substituting}\:{z}={x}+{iy}.\:{Identify} \\ $$$${the}\:{maximal}\:{region}\:{within}\:{which}\:{f}\left({z}\right)\:{is}\:{analytic} \\ $$$${f}\left({z}\right)=\frac{\mathrm{1}}{{z}\left({z}+\mathrm{1}\right)}.\: \\ $$$$ \\ $$$${Note}.\:{Do}\:{not}\:{start}\:{by}\:{just}\:{differentiating}\:{f}\left({z}\right).\: \\ $$$${Start}\:{by}\:\:{doing}\:{a}\:{substitution}\:{of}\:{x}\:{and}\:{iy}\:{and}\: \\ $$$${then}\:{verify}\:{Cauchy}\:{Rieman}\:{theorem}. \\ $$$$ \\…

Question-201631

Question Number 201631 by professorleiciano last updated on 09/Dec/23 Answered by mr W last updated on 10/Dec/23 $${totally}\:{number}\:{of}\:{words}:\:\mathrm{6}!=\mathrm{720} \\ $$$$ \\ $$$${number}\:{of}\:{words}\:{in}\:{which}\:\mathrm{3}\:{vowels} \\ $$$${are}\:{together}:\:\mathrm{4}!\mathrm{3}!=\mathrm{144} \\…

Question-201627

Question Number 201627 by professorleiciano last updated on 09/Dec/23 Answered by mr W last updated on 10/Dec/23 $${for}\:\mathrm{200}\:{meals}\:\mathrm{6}\:{cooks}\:{each}\:{working}\: \\ $$$$\mathrm{6}\:{hours}\:{are}\:{needed},\:{i}.{e}.\:{totally} \\ $$$$\mathrm{36}\:{working}\:{hours}\:{are}\:{needed}\:{for}\: \\ $$$$\mathrm{200}\:{meals}. \\…

1-3-2x-3x-1-2-1-x-3-1-2x-2-3-x-2-2x-35-x-2-gt-0-4-1-x-1-x-2-2-

Question Number 201595 by mokys last updated on 09/Dec/23 $$\left.\mathrm{1}\right)\:\:\mid\frac{\mathrm{3}+\mathrm{2}{x}}{\mathrm{3}{x}}\mid\:\leq\mathrm{1} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\mathrm{1}\leq\:\mid\:\frac{{x}−\mathrm{3}}{\mathrm{1}−\mathrm{2}{x}}\mid\leq\:\mathrm{2} \\ $$$$ \\ $$$$\left.\mathrm{3}\right)\:\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{35}}{{x}+\mathrm{2}}\:>\:\mathrm{0} \\ $$$$ \\ $$$$\left.\mathrm{4}\right)\:−\mathrm{1}\:\leq\:\frac{{x}+\mathrm{1}}{{x}−\mathrm{2}}\:\leq\mathrm{2} \\ $$…

Solve-y-t-sin-t-y-t-0-y-2-0-0-y-1-0-1-y-0-0-L-y-t-sin-t-y-t-0-s-2-F-s-sy-0-y-0-L-sin-t-y-t-0-Holy-uck-I-already-know-y-t-ty-t-0-solu

Question Number 201582 by MathedUp last updated on 09/Dec/23 $$\mathrm{Solve}…. \\ $$$${y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)=\mathrm{0}\:,\: \\ $$$${y}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)=\mathrm{0}\:,\:{y}^{\left(\mathrm{1}\right)} \left(\mathrm{0}\right)=−\mathrm{1}\:,\:{y}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\boldsymbol{\mathcal{L}}\left\{{y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)\right\}=\mathrm{0} \\ $$$${s}^{\mathrm{2}} \boldsymbol{\mathrm{F}}\left({s}\right)−{sy}\left(\mathrm{0}\right)−{y}'\left(\mathrm{0}\right)−\boldsymbol{\mathcal{L}}\left\{\mathrm{sin}\left({t}\right){y}\left({t}\right)\right\}=\mathrm{0} \\ $$$$\mathrm{Holy}…×\mathrm{uck}…

Question-201573

Question Number 201573 by sonukgindia last updated on 09/Dec/23 Answered by witcher3 last updated on 09/Dec/23 $$=\int_{−\infty} ^{\infty} \frac{\mathrm{e}^{−\mathrm{2024x}} +\mathrm{e}^{−\mathrm{2020}} }{\left(\mathrm{e}^{−\mathrm{2025x}} +\mathrm{e}^{−\mathrm{2019x}} \right)\left(\left(−\mathrm{4x}^{\mathrm{3}} +\left(\mathrm{4x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}}…