Question Number 99494 by mhmd last updated on 21/Jun/20 $${W}={f}\left({x},{y},{z}\right),{g}\left({x},{y}\right)={C}_{\mathrm{1}} \:,\:{h}\left({y},{z}\right)={C}_{\mathrm{2}} \:\:{find}\:\frac{{dw}}{{dx}}\:,\frac{{dw}}{{dy}}\:\:?\: \\ $$$$ \\ $$$${help}\:{me}\:{sir}\:{pleas}\:{i}\:{want}\:{this}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 165015 by MathsFan last updated on 24/Jan/22 Commented by MathsFan last updated on 24/Jan/22 $${help}\:{please} \\ $$ Commented by MathsFan last updated on…
Question Number 33930 by mondodotto@gmail.com last updated on 27/Apr/18 $$\boldsymbol{\mathrm{Three}}\:\boldsymbol{\mathrm{forces}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{magnitude}}\:\mathrm{6}\boldsymbol{\mathrm{N}},\mathrm{2}\boldsymbol{\mathrm{N}} \\ $$$$\boldsymbol{\mathrm{and}}\:\mathrm{3}\boldsymbol{\mathrm{N}}\:\boldsymbol{\mathrm{act}}\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{same}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{north}},\boldsymbol{\mathrm{south}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{west}}\:\boldsymbol{\mathrm{directions}}\:\boldsymbol{\mathrm{respectively}}. \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{magnitude}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{direction}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{resultant}}\:\boldsymbol{\mathrm{force}}. \\ $$$$ \\ $$ Answered by MJS…
Question Number 164993 by mkam last updated on 24/Jan/22 $${solve}\:{by}\:{series}\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{sinx}}{{x}}\:{dx} \\ $$ Answered by Mathematification last updated on 24/Jan/22 $${I}'{m}\:{not}\:{sure}\:{that}\:{it}\:{can}\:{be}\:{solved}\:{by}\:{series}. \\ $$$${Let}'{s}\:{hear}\:{from}\:{the}\:{bosses}\:{first}. \\…
Question Number 164991 by mkam last updated on 24/Jan/22 $$\boldsymbol{{Solve}}\:\boldsymbol{{by}}\:\boldsymbol{{resideo}}\:\boldsymbol{{theorem}}\:\int_{−\infty} ^{\:\infty} \:\frac{\boldsymbol{{z}}^{\mathrm{2}} }{\boldsymbol{{z}}^{\mathrm{4}} +\mathrm{1}}\:\boldsymbol{{dz}} \\ $$ Commented by mkam last updated on 24/Jan/22 $$????? \\…
Question Number 164982 by alephzero last updated on 24/Jan/22 $$\mathrm{Prove},\:\mathrm{that}\:\frac{{a}}{{b}}\::\:\frac{{c}}{{d}}\:=\:\frac{{a}}{{b}}\:\centerdot\:\frac{{d}}{{c}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 33899 by mondodotto@gmail.com last updated on 27/Apr/18 $$\boldsymbol{\mathrm{express}}\:\frac{\mathrm{4}\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\mathrm{28}}{\boldsymbol{\mathrm{t}}^{\mathrm{4}} +\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\mathrm{6}}\:\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{partial}}\:\boldsymbol{\mathrm{fraction}}. \\ $$ Answered by MJS last updated on 27/Apr/18 $${t}^{\mathrm{4}} +{t}^{\mathrm{2}} −\mathrm{6}=\mathrm{0}…
Question Number 99429 by Ar Brandon last updated on 20/Jun/20 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{n}\:\mathrm{in}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{A}_{\mathrm{n}} ^{\mathrm{n}−\mathrm{2}} =\mathrm{56}\:\left\{\mathrm{where}\:\mathrm{A}_{\mathrm{n}} ^{\mathrm{r}} =\mathrm{n}−\mathrm{permution}\:\mathrm{r}\right\} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 164956 by Jamshidbek last updated on 24/Jan/22 $$\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:\mathrm{a}_{\mathrm{2}} =−\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{a}_{\mathrm{n}} =−\mathrm{a}_{\mathrm{n}−\mathrm{1}} −\mathrm{2a}_{\mathrm{n}−\mathrm{2}} \\ $$$$\mathrm{Find}\:\:\mathrm{a}_{\mathrm{n}} \\ $$ Answered by mr W last updated on…
Question Number 99410 by Harasanemanabrandah last updated on 20/Jun/20 Commented by PRITHWISH SEN 2 last updated on 20/Jun/20 $$\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{soln}.\:\mathrm{set}\:\mathrm{is}\:\mathrm{for}\:\mathrm{every}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{number} \\ $$$$\mathrm{greater}\:\mathrm{than}\:\mathrm{0}\:,\:\mathrm{x}=\mathrm{y} \\ $$ Commented by…