Question Number 33616 by NECx last updated on 20/Apr/18 $${please}\:{help}\:{me} \\ $$$$ \\ $$$${please}\:{is}\:{there}\:{any}\:{app}\:{for}\:{practicing} \\ $$$${calculus}\:{for}\:\:{a}\:{CBT}\:{exam}.{I}\:{mean} \\ $$$${one}\:{that}\:{has}\:{a}\:{timer}\:{so}\:{I}\:{can}\:{asses} \\ $$$${my}\:{speed}. \\ $$ Commented by NECx…
Question Number 164680 by mathls last updated on 20/Jan/22 $${what}\:{is}\:{the}\:{proof}\:{of}\:{stirling}'{s}\:{formula} \\ $$$${without}\:{gamma}\:{function}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 99118 by pticantor last updated on 18/Jun/20 Answered by mathmax by abdo last updated on 18/Jun/20 $$\left.\mathrm{1}\right)\:\:\mathrm{let}\:\mathrm{p}\left(\mathrm{x}\right)\:=\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{x}^{\mathrm{k}} \:\Rightarrow\mathrm{p}^{'} \left(\mathrm{x}\right)\:=\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{kx}^{\mathrm{k}−\mathrm{1}}…
Question Number 99102 by mr W last updated on 18/Jun/20 Commented by bemath last updated on 18/Jun/20 Commented by bobhans last updated on 18/Jun/20…
Question Number 99095 by otchereabdullai@gmail.com last updated on 18/Jun/20 Answered by bobhans last updated on 18/Jun/20 $$\mathrm{P}\left(\mathrm{A}/\mathrm{B}\right)\:=\:\frac{\mathrm{P}\left(\mathrm{A}\cap\mathrm{B}\right)}{\mathrm{P}\left(\mathrm{B}\right)}\:=\:\frac{\mathrm{36}}{\mathrm{45}}\:=\:\frac{\mathrm{4}}{\mathrm{5}} \\ $$ Commented by otchereabdullai@gmail.com last updated on…
Question Number 164623 by mathocean1 last updated on 19/Jan/22 $${Given}\:{a},\:{b}\:\in\:\mathbb{R}. \\ $$$${Show}\:{that}\:: \\ $$$$\left[{a}\right]+\left[{b}\right]\leqslant\left[{a}+{b}\right]\leqslant\left[{a}\right]+\left[{b}\right]+\mathrm{1} \\ $$ Answered by mahdipoor last updated on 19/Jan/22 $$\left[{b}\right]\leqslant{b}<\left[{b}\right]+\mathrm{1}\Rightarrow{a}+\left[{b}\right]\leqslant{a}+{b}<{a}+\left[{b}\right]+\mathrm{1}\Rightarrow \\…
Question Number 164612 by bounhome last updated on 19/Jan/22 $${solve}: \\ $$$$\:\mathrm{1}.\:\int\frac{\mathrm{1}}{{sinx}}{dx} \\ $$$$\:\mathrm{2}.\int\frac{\mathrm{1}}{{cosx}}{dx} \\ $$ Answered by Ar Brandon last updated on 19/Jan/22 $$\int\frac{\mathrm{1}}{\mathrm{sin}{x}}{dx},\:{x}=\mathrm{2}{t}\Rightarrow{dx}=\mathrm{2}{dt}…
Question Number 164622 by mathocean1 last updated on 19/Jan/22 $${Show}\:{that}\:\forall\:{a},\:{b}\:\in\:\mathbb{R}, \\ $$$$\mathrm{1}.\:\mid\mid{x}\mid−\mid{y}\mid\mid\leqslant\mid{x}−{y}\mid \\ $$$$\mathrm{2}.\:\mathrm{1}+\mid{xy}−\mathrm{1}\mid\leqslant\left(\mathrm{1}+\mid{x}−\mathrm{1}\mid\right)\left(\mathrm{1}+\mid{y}−\mathrm{1}\mid\right). \\ $$ Answered by hmrsh last updated on 19/Jan/22 $$ \\…
Question Number 164609 by SANOGO last updated on 19/Jan/22 $${en}\:{posant}\:{x}={t}−\frac{\mathrm{1}}{{t}} \\ $$$$\underset{\mathrm{0}} {\int}^{+{oo}} \frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$ Answered by Mathspace last updated on 19/Jan/22…
Question Number 164591 by SANOGO last updated on 19/Jan/22 $${pour}\:{quelle}\:{valeur}\:\alpha\:{la}\:{serie}\:{converge} \\ $$$$\underset{{n}=\mathrm{2}} {\sum}\left({ln}\left({n}\right)+\alpha{ln}\left({n}−\frac{\mathrm{1}}{{n}}\right)\right. \\ $$ Answered by mindispower last updated on 19/Jan/22 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{ln}\left({n}\right)+{aln}\left({n}−\frac{\mathrm{1}}{\left.{n}\right)}\right. \\…