Question Number 103299 by B. H 28 last updated on 14/Jul/20 $${cos}\mathrm{20}°{cos}\mathrm{40}°{cos}\mathrm{80}°=…? \\ $$ Answered by bemath last updated on 14/Jul/20 $$\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{cos}\:\mathrm{3}\theta\:=\:\frac{\mathrm{1}}{\mathrm{4}}×\mathrm{cos}\:\mathrm{3}.\mathrm{20}^{{o}} =\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{2}}\:=\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$…
Question Number 37750 by kunal1234523 last updated on 17/Jun/18 $$\mathrm{Given}\:\mathrm{the}\:\mathrm{angle}\:{x},\:\mathrm{construct}\:\mathrm{the}\:\mathrm{angle}\:{y}\:\mathrm{if}\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{sin}\:{y}\:=\:\mathrm{2}\:\mathrm{sin}\:{x} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{tan}\:{y}\:=\:\mathrm{3}\:\mathrm{tan}\:{x} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{cos}\:{y}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:{x}\: \\ $$$$\left(\mathrm{4}\right)\:\mathrm{sec}\:{y}\:=\:\mathrm{cosec}\:{x} \\ $$$$\mathrm{hey}\:\mathrm{do}\:\mathrm{not}\:\mathrm{construct}\:\mathrm{it}\:\mathrm{just}\:\mathrm{find}\:\mathrm{it}\:\mathrm{out}\:\mathrm{the}\:\angle{y}\: \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{every}\:\mathrm{given}\:\mathrm{cases} \\ $$ Commented…
Question Number 37738 by kunal1234523 last updated on 17/Jun/18 $$\mathrm{given}\:{a}^{\mathrm{2}} <\mathrm{1} \\ $$$$\mathrm{now} \\ $$$${a}<\sqrt{\mathrm{1}} \\ $$$$\mathrm{or}\:{a}<\pm\mathrm{1} \\ $$$$\therefore\:{a}<\mathrm{1}\:\mathrm{and}\:{a}<−\mathrm{1}\:\:\:\:\mathrm{but}\:\mathrm{but}\:\mathrm{its}\:\mathrm{false}\:\mathrm{we}\:\mathrm{know} \\ $$$${if}\:\mathrm{a}^{\mathrm{2}} <\mathrm{1}\:\mathrm{so}\:−\mathrm{1}<{a}<\mathrm{1}\: \\ $$$${so}\:{my}\:{question}\:{is}\:{why}\:{this}\:{is}\:{happening}\:{at}\:{all}. \\…
Question Number 103239 by 9027201563 last updated on 13/Jul/20 Answered by OlafThorendsen last updated on 13/Jul/20 $$\mathrm{100}\:\mathrm{N}\:×\mathrm{cos45}°+\mathrm{60}\:\mathrm{N}\:=\:\mathrm{10}\:\mathrm{kg}\:×{a} \\ $$$${a}\:=\:\mathrm{10cos45}°+\mathrm{6}\:\approx\:\mathrm{13},\mathrm{1}\:\mathrm{m}.\mathrm{s}^{−\mathrm{2}} \\ $$$$\Rightarrow\:\boldsymbol{\mathrm{B}} \\ $$ Commented by…
Question Number 37691 by MJS last updated on 16/Jun/18 $$\mathrm{Sir}\:\mathrm{Aifour},\:\mathrm{I}\:\mathrm{just}\:\mathrm{answered}\:\mathrm{your}\:\mathrm{question} \\ $$$$\mathrm{number}\:\mathrm{37209}…\:\mathrm{greetings}\:\mathrm{from}\:\mathrm{a}\:\mathrm{rainy} \\ $$$$\mathrm{Saturday}\:\mathrm{evening}\:\mathrm{in}\:\mathrm{Vienna},\:\mathrm{Austria}! \\ $$ Commented by ajfour last updated on 16/Jun/18 $${rainy}\:{even}\:{up}\:{here},\:{Sir} \\…
Question Number 103205 by DGmichael last updated on 13/Jul/20 Answered by OlafThorendsen last updated on 13/Jul/20 $${f}\left(\lambda\right)\:=\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\lambda^{{k}} }{{k}!} \\ $$$$\Rightarrow\:{f}'\left(\lambda\right)\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{k}\lambda^{{k}−\mathrm{1}} }{{k}!}\:=\:\underset{{k}=\mathrm{1}}…
Question Number 37652 by Rio Mike last updated on 16/Jun/18 $$\mathrm{A}\:\mathrm{car},\mathrm{of}\:\mathrm{mass}\:\mathrm{1000kg},\mathrm{has}\:\mathrm{an}\:\mathrm{engine} \\ $$$$\mathrm{capable}\:\mathrm{of}\:\mathrm{developing}\:\mathrm{power}\:\mathrm{of}\: \\ $$$$\mathrm{15Kw}\:\mathrm{against}\:\mathrm{a}\:\mathrm{constand}\:\mathrm{Resistance} \\ $$$$\mathrm{R}\:\mathrm{N}.\mathrm{The}\:\mathrm{maximum}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car} \\ $$$$\mathrm{on}\:\mathrm{level}\:\mathrm{road}\:\mathrm{is}\:\frac{\mathrm{100}}{\mathrm{3}}\:{ms}^{−\mathrm{1}} \: \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{R}. \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{resistance}\:\mathrm{and}\:\mathrm{the}\:\mathrm{power} \\…
Question Number 103186 by mohammad17 last updated on 13/Jul/20 $${Discuss}\:{whether}\:{the}\:{mean}\:{value}\:{theorem}\: \\ $$$${applies}\:{to}\:{the}\:{function}\:{f}\left({x}\right)=\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\:\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 103180 by mohammad17 last updated on 13/Jul/20 $${Let}\:{S}\:{be}\:{a}\:{nonempty}\:{subset}\:{of}\:{R}\:{that}\:{is}\:{bounded} \\ $$$${below}\:.\:{prove}\:{that}\:\left({inf}\left({S}\right)=−{sup}\left\{−{s}:{s}\in{S}\right\}\right)? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 103177 by mohammad17 last updated on 13/Jul/20 $${Find}\:{the}\:{gineral}\:{form}\:{of}\:{the}\:{sequence}\:\langle\mathrm{2},−\mathrm{2},\mathrm{2},−\mathrm{2},…..\rangle? \\ $$ Answered by Dwaipayan Shikari last updated on 13/Jul/20 $$\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \\ $$…