Question Number 103180 by mohammad17 last updated on 13/Jul/20 $${Let}\:{S}\:{be}\:{a}\:{nonempty}\:{subset}\:{of}\:{R}\:{that}\:{is}\:{bounded} \\ $$$${below}\:.\:{prove}\:{that}\:\left({inf}\left({S}\right)=−{sup}\left\{−{s}:{s}\in{S}\right\}\right)? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 103177 by mohammad17 last updated on 13/Jul/20 $${Find}\:{the}\:{gineral}\:{form}\:{of}\:{the}\:{sequence}\:\langle\mathrm{2},−\mathrm{2},\mathrm{2},−\mathrm{2},…..\rangle? \\ $$ Answered by Dwaipayan Shikari last updated on 13/Jul/20 $$\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \\ $$…
Question Number 168710 by bekzodjumayev last updated on 16/Apr/22 Commented by bekzodjumayev last updated on 16/Apr/22 $${Please}\:{help} \\ $$ Commented by mather last updated on…
Question Number 168680 by mokys last updated on 15/Apr/22 Commented by mokys last updated on 15/Apr/22 $${help}\:{me}\:{sir}\:{please} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 168669 by mokys last updated on 15/Apr/22 $$\boldsymbol{{convert}}\:\boldsymbol{{the}}\:\boldsymbol{{intigeral}}\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{4}\boldsymbol{{xy}}^{\mathrm{3}} \boldsymbol{{dxdy}}\:\boldsymbol{{to}}\:\boldsymbol{{polar}}\:\boldsymbol{{cordinaite}}\:\boldsymbol{{and}}\:\boldsymbol{{it}}\:\boldsymbol{{solve}}\:? \\ $$ Commented by mokys last updated on 15/Apr/22 $${false}…
Question Number 168665 by mokys last updated on 15/Apr/22 Commented by cortano1 last updated on 15/Apr/22 $$\:{A}_{\mathrm{1}} =\:\underset{−\mathrm{2}} {\overset{\mathrm{0}} {\int}}\left(\mathrm{8}−{x}^{\mathrm{3}} \right){dx}=\:\left[\mathrm{8}{x}−\frac{{x}^{\mathrm{4}} }{\mathrm{4}}\right]_{−\mathrm{2}} ^{\mathrm{0}} \\ $$$$\:\:\:\:\:\:=\:\mathrm{8}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{4}}\left(−\mathrm{16}\right)=\mathrm{16}+\mathrm{4}=\mathrm{20}…
Question Number 37591 by mondodotto@gmail.com last updated on 15/Jun/18 $$\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{circle}}\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{y}}−\mathrm{8}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} −\mathrm{24}\boldsymbol{{x}}+\boldsymbol{{hy}}=\mathrm{0}\:\boldsymbol{\mathrm{cut}}\:\boldsymbol{\mathrm{orthogonally}}, \\ $$$$\boldsymbol{\mathrm{determine}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{{h}}. \\ $$$$ \\ $$ Answered by tanmay.chaudhury50@gmail.com…
Question Number 103124 by Faetma last updated on 12/Jul/20 $$\mathrm{Li}\left({z}\right)=\int_{\mathrm{2}} ^{{z}} \frac{\mathrm{1}}{\mathrm{ln}\:{t}}\mathrm{d}{t} \\ $$$$\mathrm{Li}\left({a}+{ib}\right)=\mathfrak{R}\left(\int_{\mathrm{2}} ^{{a}+{ib}} \frac{\mathrm{1}}{\mathrm{ln}\:{t}}\mathrm{d}{t}\right)+{i}\mathfrak{I}\left(\int_{\mathrm{2}} ^{{a}+{ib}} \frac{\mathrm{1}}{\mathrm{ln}\:{t}}\mathrm{d}{t}\right) \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{me} \\ $$$$\mathrm{how}\:\mathrm{get}\:\mathrm{the}\:\mathrm{formula} \\ $$$$\mathrm{for}\:\mathfrak{R}\left(\mathrm{Li}\left({z}\right)\right)\:\mathrm{and} \\…
Question Number 168628 by SANOGO last updated on 14/Apr/22 $${montrer}\:{que} \\ $$$${d}\left({x},{y}\right)=\frac{\mid{u}−{v}\mid}{\mathrm{1}+\mid{u}−{v}\mid}\: \\ $$$${une}\:{distance}\:{sur}\:{R} \\ $$ Answered by ArielVyny last updated on 15/Apr/22 $${d}\left({x},{y}\right)=\frac{\mid{x}−{y}\mid}{\mathrm{1}+\mid{x}−{y}\mid} \\…
Question Number 103073 by Faetma last updated on 12/Jul/20 $$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{write} \\ $$$$\int_{\mathrm{0}} ^{{a}+{ib}} {f}\left({x}\right)\mathrm{d}{x} \\ $$$$\mathrm{but}\:\mathrm{with}\:\mathrm{the}\:\mathrm{form} \\ $$$$\alpha+{i}\beta \\ $$$$\mathrm{How}\:\mathrm{write}\:\mathrm{that}? \\ $$$$\mathrm{Sorry}\:\mathrm{for}\:\mathrm{my}\:\mathrm{bad} \\ $$$$\mathrm{english} \\…