Menu Close

Category: None

how-do-i-calculate-for-1-2-

Question Number 163346 by MathsFan last updated on 06/Jan/22 $${how}\:{do}\:{i}\:{calculate}\:{for}\:\frac{\mathrm{1}}{\mathrm{2}}! \\ $$ Commented by Ar Brandon last updated on 06/Jan/22 $$\Gamma\left({x}+\mathrm{1}\right)={x}\Gamma\left({x}\right)={x}\left({x}−\mathrm{1}\right)\Gamma\left({x}−\mathrm{1}\right)…\Gamma\left(\mathrm{1}\right)={x}! \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\sqrt{\pi}\:\:,\:\:\Gamma\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!=\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}}…

Given-that-a-n-is-a-geometric-sequence-where-the-first-term-a-1-gt-1-and-the-common-ratio-r-gt-0-If-b-n-log-2-a-n-where-n-N-b-1-b-3-b-5-6-and-b-1-b-3-b-5-0-find-the-general-term-of

Question Number 163324 by ZiYangLee last updated on 06/Jan/22 $$\mathrm{Given}\:\mathrm{that}\:\left\{{a}_{{n}} \right\}\:\mathrm{is}\:\mathrm{a}\:\mathrm{geometric}\:\mathrm{sequence} \\ $$$$\mathrm{where}\:\mathrm{the}\:\mathrm{first}\:\mathrm{term},\:{a}_{\mathrm{1}} >\mathrm{1}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{ratio},\:{r}>\mathrm{0}.\: \\ $$$$\mathrm{If}\:{b}_{{n}} =\mathrm{log}_{\mathrm{2}} \:{a}_{{n}} \:\mathrm{where}\:{n}\in\mathbb{N},\:{b}_{\mathrm{1}} +{b}_{\mathrm{3}} +{b}_{\mathrm{5}} =\mathrm{6}, \\…

Given-the-roots-of-the-quadratic-equation-4x-2-4x-5-0-are-and-f-x-is-a-quadratic-function-where-f-f-and-f-0-6-Find-f-x-

Question Number 163323 by ZiYangLee last updated on 06/Jan/22 $$\mathrm{Given}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{equation} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{5}=\mathrm{0}\:\mathrm{are}\:\alpha\:\mathrm{and}\:\beta.\:\: \\ $$$${f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{function}\:\mathrm{where}\:{f}\left(\alpha\right)=\beta\:, \\ $$$${f}\left(\beta\right)=\alpha\:\mathrm{and}\:{f}\left(\mathrm{0}\right)=\mathrm{6}\:.\: \\ $$$$\mathrm{Find}\:{f}\left({x}\right). \\ $$ Commented by cortano1 last…

Question-163318

Question Number 163318 by KONE last updated on 06/Jan/22 Answered by Mathspace last updated on 06/Jan/22 $$={lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}} \left[{e}^{\frac{{k}}{{n}}} \right] \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left[{e}^{{x}}…

Question-32241

Question Number 32241 by mondodotto@gmail.com last updated on 22/Mar/18 Commented by MJS last updated on 22/Mar/18 $$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{that}'\mathrm{s}\:\mathrm{true}\:\mathrm{if}\:\mathrm{you} \\ $$$$\mathrm{can}\:\mathrm{freely}\:\mathrm{choose}\:{a},\:{b}\:\mathrm{and}\:\theta \\ $$$$\mathrm{but}\:\mathrm{of}\:\mathrm{course}\:\mathrm{you}\:\mathrm{can}\:\mathrm{find}\:\theta \\ $$$$\mathrm{for}\:\mathrm{any}\:\mathrm{given}\:\mathrm{triplet}\:{a},\:{b},\:{c}\:\:\mathrm{with} \\ $$$$\mathrm{or}\:\mathrm{without}\:{a}^{\mathrm{2}}…

Question-32240

Question Number 32240 by mondodotto@gmail.com last updated on 22/Mar/18 Answered by MJS last updated on 22/Mar/18 $$\frac{\mathrm{cos}\:\alpha}{\mathrm{sin}\:\beta×\mathrm{sin}\:\gamma}+\frac{\mathrm{cos}\:\beta}{\mathrm{sin}\:\alpha×\mathrm{sin}\:\gamma}+\frac{\mathrm{cos}\:\gamma}{\mathrm{sin}\:\alpha×\mathrm{sin}\:\beta}= \\ $$$$=\frac{\mathrm{cos}\:\alpha×\mathrm{sin}\:\alpha+\mathrm{cos}\:\beta×\mathrm{sin}\:\beta+\mathrm{cos}\:\gamma×\mathrm{sin}\:\gamma}{\mathrm{sin}\:\alpha×\mathrm{sin}\:\beta×\mathrm{sin}\:\gamma} \\ $$$$ \\ $$$$\mathrm{I}. \\ $$$$\mathrm{cos}\:\alpha×\mathrm{sin}\:\alpha+\mathrm{cos}\:\beta×\mathrm{sin}\:\beta+\mathrm{cos}\:\gamma×\mathrm{sin}\:\gamma=…