Menu Close

Category: None

Find-all-the-triples-of-positive-integers-x-y-z-so-that-x-y-2020-y-z-2020-is-a-rational-number-and-x-2-y-2-z-2-be-a-prime-number-

Question Number 97554 by 1549442205 last updated on 08/Jun/20 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{triples}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{integers}\:\left(\mathrm{x};\mathrm{y};\mathrm{z}\right) \\ $$$$\mathrm{so}\:\mathrm{that}\:\frac{\mathrm{x}−\mathrm{y}\sqrt{\mathrm{2020}}}{\mathrm{y}−\mathrm{z}\sqrt{\mathrm{2020}}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{rational}\:\mathrm{number} \\ $$$$\mathrm{and}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \mathrm{be}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}. \\ $$ Commented by Rasheed.Sindhi last updated on…

Question-31954

Question Number 31954 by mondodotto@gmail.com last updated on 17/Mar/18 Answered by mrW2 last updated on 18/Mar/18 $${A}={A}_{\mathrm{0}} {e}^{−\lambda{t}} \\ $$$$\mathrm{0}.\mathrm{5}{A}_{\mathrm{0}} ={A}_{\mathrm{0}} {e}^{−\mathrm{15}\lambda} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{15}} \\…

Question-31949

Question Number 31949 by naka3546 last updated on 17/Mar/18 Answered by mrW2 last updated on 17/Mar/18 $${N}=\mathrm{4}{n}+\mathrm{2}=\mathrm{2}\left(\mathrm{2}{n}+\mathrm{1}\right) \\ $$$${M}=\mathrm{16}{m}+\mathrm{8}=\mathrm{8}\left(\mathrm{2}{m}+\mathrm{1}\right) \\ $$$${MN}=\mathrm{16}\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{m}+\mathrm{1}\right)=\mathrm{16}\left[\mathrm{2}\left({m}+{n}+\mathrm{2}{mn}\right)+\mathrm{1}\right] \\ $$$$=\mathrm{32}\left({m}+{n}+\mathrm{2}{mn}\right)+\mathrm{16} \\ $$$$\Rightarrow{y}=\mathrm{16}…

2F1-1-2-1-2-1-2-z-1-z-1-2-1-by-kummer-transformation-2F1-1-2-1-2-1-2-z-2F1-1-2-1-2-1-1-2-1-2-1-2-z-2F1-1-2-1-2-1-2-z-sin-1-1-z-1-z-2-why-do-i-g

Question Number 97476 by  M±th+et+s last updated on 08/Jun/20 $$\mathrm{2}{F}\mathrm{1}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}};{z}\right)=\left(\mathrm{1}−{z}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \ast\ast\mathrm{1} \\ $$$${by}\:{kummer}\:{transformation} \\ $$$$\mathrm{2}{F}\mathrm{1}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}};{z}\right)=\mathrm{2}{F}\mathrm{1}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}};{z}\right) \\ $$$$\mathrm{2}{F}\mathrm{1}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}};{z}\right)=\frac{{sin}^{−\mathrm{1}} \sqrt{\mathrm{1}−{z}}}{\:\sqrt{\mathrm{1}−{z}}}\ast\ast\mathrm{2} \\ $$$$ \\ $$$${why}\:{do}\:{i}\:{get}\:{different}\:{answer}\:{in} \\ $$$$\ast\ast\mathrm{1}\:{and}\:\mathrm{2}\ast\ast \\…