Menu Close

Category: None

Find-dy-dx-of-2-x-y-2-2xy-x-y-C-

Question Number 97073 by naka3546 last updated on 06/Jun/20 $${Find}\:\:\frac{{dy}}{{dx}}\:\:{of}\:\:\:\:\mathrm{2}^{{x}} \:+\:{y}^{\mathrm{2}} \:=\:\mathrm{2}{xy}\:\:\:\:,\:\:{x},\:{y}\:\in\:\mathbb{C} \\ $$ Commented by john santu last updated on 06/Jun/20 $$\mathrm{2}^{{x}} \:\mathrm{ln}\left(\mathrm{2}\right)+\:\mathrm{2yy}'\:=\:\mathrm{2y}+\mathrm{2}{x}\mathrm{y}' \\…

Question-162589

Question Number 162589 by mkam last updated on 30/Dec/21 Answered by Ar Brandon last updated on 30/Dec/21 $${T}=\mathrm{cos}\vartheta\mathrm{cos2}\vartheta\mathrm{cos4}\vartheta…\mathrm{cos}\left(\mathrm{2}^{{n}−\mathrm{1}} \vartheta\right) \\ $$$$\mathrm{2sin}\vartheta{T}=\mathrm{sin2}\vartheta\mathrm{cos2}\vartheta\mathrm{cos4}\vartheta…\mathrm{cos}\left(\mathrm{2}^{{n}−\mathrm{1}} \vartheta\right) \\ $$$$\mathrm{4sin}\vartheta{T}=\mathrm{sin4}\vartheta…\mathrm{cos}\left(\mathrm{2}^{{n}−\mathrm{1}} \vartheta\right)…

Question-162560

Question Number 162560 by muneer0o0 last updated on 30/Dec/21 Commented by TheHoneyCat last updated on 01/Jan/22 $${f}\:=\:{z}\:+\:{px}^{\mathrm{2}} \:+\:{qy}^{\mathrm{2}} \:+\:{xypq}\:=\:\mathrm{0} \\ $$$$\left({for}\:{thoses}\:{who}\:{had}\:{trouble}\:{reading}…\right) \\ $$$$ \\ $$$$\mathrm{It}\:\mathrm{would}\:\mathrm{be}\:\mathrm{great}\:\mathrm{to}\:\mathrm{know}\:\mathrm{what}\:\mathrm{all}\:\mathrm{of}\:\mathrm{these}\:\mathrm{varriables}\:\mathrm{are}…