Menu Close

Category: None

Given-that-y-4y-3y-0-and-y-0-0-y-0-2-find-y-ln-2-

Question Number 160659 by ZiYangLee last updated on 04/Dec/21 $$\mathrm{Given}\:\mathrm{that}\:{y}''−\mathrm{4}{y}'+\mathrm{3}{y}=\mathrm{0}\:\mathrm{and}\:{y}\left(\mathrm{0}\right)=\mathrm{0}, \\ $$$${y}'\left(\mathrm{0}\right)=\mathrm{2},\:\mathrm{find}\:{y}\left(\mathrm{ln}\:\mathrm{2}\right). \\ $$ Answered by mr W last updated on 04/Dec/21 $${let}\:{y}={ae}^{{px}} \\ $$$${ap}^{\mathrm{2}}…

les-digonales-d-un-quadrile-re-ABCD-inscriptible-se-coupent-en-O-on-note-AB-a-BC-b-CD-c-AD-d-OA-e-OB-f-Oc-g-OD-h-montrer-que-a-c-c-a-b-d-d-b-e-g-g-e-f-h-h-f-

Question Number 160649 by Eric002 last updated on 04/Dec/21 $${les}\:{digonales}\:{d}'{un}\:{quadril}\grave {{e}re}\:{ABCD} \\ $$$$\left({inscriptible}\right)\:{se}\:{coupent}\:{en}\:{O}\:{on}\:{note} \\ $$$${AB}={a}\:;\:{BC}={b}\:;\:{CD}={c}\:;\:{AD}={d}\:;\:{OA}={e} \\ $$$${OB}={f}\:;\:{Oc}={g}\:;\:{OD}={h} \\ $$$${montrer}\:{que}: \\ $$$$\frac{{a}}{{c}}+\frac{{c}}{{a}}+\frac{{b}}{{d}}+\frac{{d}}{{b}}\leqslant\frac{{e}}{{g}}+\frac{{g}}{{e}}+\frac{{f}}{{h}}+\frac{{h}}{{f}} \\ $$ Terms of…

lim-x-0-0-x-x-1-lnx-

Question Number 160625 by Jamshidbek last updated on 03/Dec/21 $$\underset{{x}\rightarrow\mathrm{0}+\mathrm{0}} {\mathrm{lim}}\left(\mathrm{x}^{\mathrm{x}} −\mathrm{1}\right)\mathrm{lnx} \\ $$ Answered by Mathspace last updated on 03/Dec/21 $${f}\left({x}\right)=\left({x}^{{x}} −\mathrm{1}\right){lnx}\:\Rightarrow \\ $$$$\left.{f}\left({x}\right)=_{{lnx}={t}}…

Given-that-y-3-sin-x-4-cos-x-6-2-0-x-2pi-Find-the-smallest-value-of-y-

Question Number 160605 by ZiYangLee last updated on 03/Dec/21 $$\mathrm{Given}\:\mathrm{that}\:{y}=\left(\mathrm{3}\:\mathrm{sin}\:{x}−\mathrm{4}\:\mathrm{cos}\:{x}+\mathrm{6}\right)^{\mathrm{2}} ,\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\pi. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{value}\:\mathrm{of}\:{y}. \\ $$ Commented by cortano last updated on 03/Dec/21 $$\mathrm{y}=\left[\mathrm{5}\left(\frac{\mathrm{3}}{\mathrm{5}}\mathrm{sin}\:\mathrm{x}−\frac{\mathrm{4}}{\mathrm{5}}\mathrm{cos}\:\mathrm{x}\right)+\mathrm{6}\right]^{\mathrm{2}} \\ $$$$\mathrm{y}=\left[\mathrm{5sin}\:\left(\alpha−\mathrm{x}\right)+\mathrm{6}\right]^{\mathrm{2}}…