Question Number 160606 by ZiYangLee last updated on 03/Dec/21 $$\mathrm{Evaluate}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:\mathrm{when}\:{x}=\mathrm{ln}\:\mathrm{2}\:\mathrm{and}\:{y}=\mathrm{2}. \\ $$ Commented by MJS_new last updated on 03/Dec/21 $${y}={f}\left({x}\right) \\ $$$$\frac{{dy}}{{dx}}={f}\:'\left({x}\right) \\…
Question Number 160596 by Ahmed1hamouda last updated on 03/Dec/21 Answered by Mathspace last updated on 03/Dec/21 $${I}=\int_{{c}} \:\:\frac{{e}^{\mathrm{3}{z}} {sin}\left(\mathrm{2}{z}\right)}{\left(\mathrm{4}{z}−{j}\pi\right)^{\mathrm{3}} }{dz}\:\:{with}\:{c}\rightarrow\mid{z}−{j}\mid=\mathrm{1} \\ $$$${let}\:\varphi\left({z}\right)=\frac{{e}^{\mathrm{3}{z}} {sin}\left(\mathrm{2}{z}\right)}{\left(\mathrm{4}{z}−{j}\pi\right)^{\mathrm{3}} }=\frac{{e}^{\mathrm{3}{z}} {sin}\left(\mathrm{2}{z}\right)}{\mathrm{64}\left({z}−\frac{{j}\pi}{\mathrm{4}}\right)^{\mathrm{3}}…
Question Number 95059 by mr W last updated on 22/May/20 $${To}\:{Tinku}\:{Tara} \\ $$$${dear}\:{sir}:\:{i}\:{experienced}\:{following}\:{issues}: \\ $$$$\mathrm{1}.\:{sometimes}\:{i}\:{got}\:{notification},\:{but} \\ $$$${i}\:{didn}'{t}\:{see}\:{any}\:{update}\:{in}\:{the} \\ $$$${corresponding}\:{threads}.\:{what}\:{can}\:{be} \\ $$$${the}\:{reason}? \\ $$$$\mathrm{2}.\:{when}\:{i}\:{activate}\:{the}\:{filter}\:{to}\:{show} \\ $$$${bookmarked}\:{posts},\:{only}\:{some}\:{of}\:{the}…
Question Number 95053 by Shakhzod last updated on 22/May/20 Commented by Shakhzod last updated on 22/May/20 $${Please}\:{help}\:{me}\:{friends}.\:{I}\:{need}\:{your}\:{help}\:{now}. \\ $$ Commented by Shakhzod last updated on…
Question Number 160580 by LEKOUMA last updated on 02/Dec/21 $${Calculate}\: \\ $$$$\mathrm{1}.\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{x}\sqrt{\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)}}{\mathrm{1}+{e}^{{x}−\mathrm{3}} } \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{{x}^{\mathrm{3}} +\mathrm{5}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)^{\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$ Terms of…
Question Number 160569 by LEKOUMA last updated on 02/Dec/21 $${Calculate}\: \\ $$$$\mathrm{1}.\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{2}{e}^{\frac{{x}}{{x}+\mathrm{1}}} −\mathrm{1}\right]^{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}} \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}+{x}×\mathrm{2}^{{x}} }{\mathrm{1}+{x}×\mathrm{3}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$ \\ $$…
Question Number 160561 by Armindo last updated on 01/Dec/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95011 by prince 5 last updated on 22/May/20 $${Given}\:{tbat}\:{a}\:{disk}\:{has}\:\mathrm{18}\:{sectors},\:\mathrm{80}\:{tracks} \\ $$$${and}\:{a}\:{sector}\:{capacity}\:{of}\:\mathrm{512}{bytes}.\:{Prove}\: \\ $$$${that}\:{the}\:{storage}\:{capacity}\:{is}\:\mathrm{1}.\mathrm{44}{MB} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95001 by mathocean1 last updated on 22/May/20 $$\mathrm{Exercise} \\ $$$$\mathrm{Given}\:\mathrm{a},\:\mathrm{b}\:\in\:\mathbb{R}^{\ast} \:\mathrm{and}\:{t}\:\mathrm{is}\:\mathrm{a}\:\mathrm{variable}\:\mathrm{real}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Solve}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2}} \:\mathrm{for}\:{x},{y}\:\mathrm{this}\:\mathrm{system}:\: \\ $$$$\begin{cases}{{x}\mathrm{sin}\:{t}−{y}\mathrm{cos}\:{t}=−\mathrm{a}}\\{{x}\mathrm{cos}\:{t}+{y}\mathrm{sin}\:{t}={b}.}\end{cases} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)/\mathrm{Demonstrate}\:\mathrm{that}\:\mathrm{these}\:\mathrm{solutions}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{written}\:\mathrm{like}\:\mathrm{this}\:\left(\:{r}\:\mathrm{and}\:\theta\:\in\:\mathbb{R}\right). \\…
Question Number 160529 by LEKOUMA last updated on 01/Dec/21 $${Resolve}\: \\ $$$$\:{u}_{{n}} −\mathrm{3}{u}_{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \:\:{and} \\ $$$$\:{u}_{{n}} =\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{5cos}\:\left({n}\frac{\Pi}{\mathrm{3}}\right),\:\:{u}_{{o}} =\mathrm{1} \\ $$ Answered by mr…