Menu Close

Category: None

1-Show-that-0-pi-xdx-a-2-sin-2-x-b-2-cos-2-x-2-pi-2-a-2-b-2-4a-3-b-3-2-The-density-at-the-point-x-y-of-a-lamina-bounded-by-the-circle-x-2-y-2-2ax-0-i

Question Number 94992 by Mr.D.N. last updated on 22/May/20 $$\:\mathrm{1}.\:\mathrm{Show}\:\:\mathrm{that}: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\:\pi} \:\:\:\frac{\mathrm{xdx}}{\left(\mathrm{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \mathrm{x}+\mathrm{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \mathrm{x}\right)^{\mathrm{2}} }\:=\:\frac{\pi^{\mathrm{2}} \left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)}{\mathrm{4a}^{\mathrm{3}} \mathrm{b}^{\mathrm{3}} } \\…

Montre-que-Sup-A-B-Sup-A-Inf-B-Avec-A-B-a-b-a-A-b-B-

Question Number 160526 by mathocean1 last updated on 14/Dec/21 $${Montre}\:{que}\:{Sup}\left({A}−{B}\right)={Sup}\left({A}\right)−{Inf}\left({B}\right) \\ $$$${Avec}\:{A}−{B}=\left\{{a}−{b}\:;\:{a}\in\:{A}\:,\:{b}\in\:{B}\right\} \\ $$ Answered by puissant last updated on 01/Dec/21 $${Il}\:{faut}\:{bien}\:{recopier}\:{l}'{enonc}\acute {{e}}\:{de}\:{l}'{exercice} \\ $$$${c}'{est}\:{A}−{B}=\left\{{a}−{b}\:;\:{a}\in{A}\:,\:{b}\in{B}\right\}…

y-2-4y-x-2-2x-1-y-1-2x-1-y-2-x-2y-2-10y-3-

Question Number 160521 by crushh last updated on 01/Dec/21 $$\left({y}^{\mathrm{2}} +\mathrm{4}{y}\right)\sqrt{{x}+\mathrm{2}}=\left(\mathrm{2}{x}+\mathrm{1}\right)\left({y}+\mathrm{1}\right) \\ $$$$\left(\frac{\mathrm{2}{x}+\mathrm{1}}{{y}}\right)^{\mathrm{2}} +{x}=\mathrm{2}{y}^{\mathrm{2}} +\mathrm{10}{y}+\mathrm{3} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-160496

Question Number 160496 by mathlove last updated on 30/Nov/21 Answered by Kamel last updated on 01/Dec/21 $$ \\ $$$${z}^{\mathrm{2}{n}+\mathrm{1}} −\mathrm{1}=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\prod}}\left({z}−{e}^{\frac{\mathrm{2}{k}\pi{i}}{\mathrm{2}{n}+\mathrm{1}}} \right) \\ $$$$\therefore\:\:\underset{{k}=\mathrm{0}}…

We-suppose-in-R-2-the-base-i-j-we-have-these-vectors-u-m-2-m-i-2mj-v-m-1-i-m-1-j-m-R-1-Determinate-m-for-which-the-system-u-v-is-linear-dependant-det-

Question Number 94915 by mathocean1 last updated on 21/May/20 $$\mathrm{We}\:\mathrm{suppose}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2}} \:\mathrm{the}\:\mathrm{base}\:\left(\overset{\rightarrow} {{i}};\overset{\rightarrow} {{j}}\right). \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{these}\:\mathrm{vectors}: \\ $$$$\overset{\rightarrow} {\mathrm{u}}=\left(\mathrm{m}^{\mathrm{2}} −\mathrm{m}\right)\overset{\rightarrow} {{i}}+\mathrm{2m}\overset{\rightarrow} {{j}}\:;\: \\ $$$$\overset{\rightarrow} {\mathrm{v}}=\left(\mathrm{m}−\mathrm{1}\right)\overset{\rightarrow} {{i}}+\left(\mathrm{m}+\mathrm{1}\right)\overset{\rightarrow}…

Solve-in-0-2pi-2sin-4x-pi-6-1-Please-sirs-

Question Number 94910 by mathocean1 last updated on 21/May/20 $$\mathrm{Solve}\:\mathrm{in}\:\left[\mathrm{0};\mathrm{2}\pi\right] \\ $$$$\mathrm{2sin}\left(\mathrm{4}{x}−\frac{\pi}{\mathrm{6}}\right)\geqslant\mathrm{1} \\ $$$$\mathrm{Please}\:\mathrm{sirs}… \\ $$ Answered by mr W last updated on 21/May/20 $$\mathrm{sin}\:\left(\mathrm{4}{x}−\frac{\pi}{\mathrm{6}}\right)\geqslant\frac{\mathrm{1}}{\mathrm{2}}…

dx-sinx-cosx-1-

Question Number 160432 by mkam last updated on 29/Nov/21 $$\int\:\frac{{dx}}{{sinx}+{cosx}+\mathrm{1}} \\ $$ Answered by Ar Brandon last updated on 29/Nov/21 $${I}=\int\frac{{dx}}{\mathrm{sin}{x}+\mathrm{cos}{x}+\mathrm{1}} \\ $$$$\:\:\:=\int\frac{{dx}}{\mathrm{2sin}\left(\frac{{x}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{2cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}} \\…