Question Number 200934 by sonukgindia last updated on 26/Nov/23 Answered by Frix last updated on 27/Nov/23 $$\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}\left(\mathrm{tan}\:\pi{x}\right)^{\frac{\mathrm{4}}{\mathrm{5}}} {dx}\:\overset{{t}=\left(\mathrm{cot}\:{x}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} } {=} \\ $$$$=−\frac{\mathrm{5}}{\pi}\underset{\infty} {\overset{\mathrm{0}}…
Question Number 200925 by akolade last updated on 26/Nov/23 Answered by mr W last updated on 26/Nov/23 $$\boldsymbol{{p}}=\overset{\rightarrow} {{AB}}=\left(\mathrm{6},\:−\mathrm{14}\right) \\ $$$${C}=\left(\mathrm{1},\mathrm{5}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{6},\:−\mathrm{14}\right)=\left(\mathrm{2}.\mathrm{5},\:\mathrm{1}.\mathrm{5}\right) \\ $$$${D}=\left(\mathrm{1},\mathrm{5}\right)+\frac{\mathrm{2}}{\mathrm{4}}\left(\mathrm{6},\:−\mathrm{14}\right)=\left(\mathrm{4},\:−\mathrm{2}\right) \\ $$$${E}=\left(\mathrm{1},\mathrm{5}\right)+\frac{\mathrm{3}}{\mathrm{4}}\left(\mathrm{6},\:−\mathrm{14}\right)=\left(\mathrm{5}.\mathrm{5},\:−\mathrm{5}.\mathrm{5}\right)…
Question Number 200919 by MrGHK last updated on 26/Nov/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 200903 by MrGHK last updated on 26/Nov/23 Answered by witcher3 last updated on 26/Nov/23 $$\mathrm{Hint} \\ $$$$\left(−\mathrm{1}\right)^{\mathrm{n}} \left(\Psi\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{ln}\left(\mathrm{n}\right)\right)=\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\left(\mathrm{ln}\left(\frac{\mathrm{2n}+\mathrm{1}}{\mathrm{2n}}\right)+\Psi\left(\mathrm{2n}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\Psi\left(\mathrm{2n}+\frac{\mathrm{3}}{\mathrm{2}}\right)\right) \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}ln}\left(\underset{\mathrm{1}} {\overset{\mathrm{x}}…
Question Number 200860 by liuxinnan last updated on 25/Nov/23 $${when}\:{x}\in\left[\mathrm{0},\infty\right) \\ $$$$\left({x}+{m}\right){e}^{\mathrm{2}{x}} −{x}^{\mathrm{2}} \geqslant\left({x}+{m}\right){ln}\left({x}+{m}\right) \\ $$$${m}\in? \\ $$ Answered by witcher3 last updated on 25/Nov/23…
Question Number 200861 by sonukgindia last updated on 25/Nov/23 Answered by Mathspace last updated on 25/Nov/23 $${J}=_{{x}={t}^{\frac{\mathrm{1}}{\mathrm{10}}} } \frac{\mathrm{1}}{\mathrm{10}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{5}}{\mathrm{1}+{t}}{t}^{\frac{\mathrm{1}}{\mathrm{10}}−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty}…
Question Number 200862 by sonukgindia last updated on 25/Nov/23 Answered by Mathspace last updated on 25/Nov/23 $$\Phi \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{5}{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{10}} }{dx}=_{{x}={t}^{\frac{\mathrm{1}}{\mathrm{10}}} } \frac{\mathrm{1}}{\mathrm{10}}\int_{\mathrm{0}}…
Question Number 200863 by sonukgindia last updated on 25/Nov/23 Answered by Mathspace last updated on 25/Nov/23 $${x}^{\mathrm{2}\pi} ={t}\:\Rightarrow{x}={t}^{\frac{\mathrm{1}}{\mathrm{2}\pi}} \:{and} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\frac{\pi}{\mathrm{5}}−\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{2}\pi} }{dx}=\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{\mathrm{0}}…
Question Number 200859 by liuxinnan last updated on 25/Nov/23 $$\sqrt[{\mathrm{0}}]{{x}}=? \\ $$ Commented by mr W last updated on 25/Nov/23 $${not}\:{defined},\:{just}\:{like}\:\frac{\mathrm{1}}{\mathrm{0}}. \\ $$ Terms of…
Question Number 200864 by Rydel last updated on 25/Nov/23 $$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{xE}\left({x}\right)+\mathrm{3}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{sin}\:{x}}} \\ $$ Answered by Mathspace last updated on 25/Nov/23 $$={lim}_{{x}\rightarrow+\infty} \frac{{xE}\left({x}\right)+\mathrm{3}}{{x}\sqrt{\mathrm{1}+\frac{{sinx}}{{x}^{\mathrm{2}} }}} \\…