Menu Close

Category: None

Exercise-ABC-is-a-triangle-A-B-C-are-respec-tively-middles-of-sides-BC-AC-and-AB-G-is-isobarycenter-situated-at-equal-distance-of-A-G-and-C-1-By-using-the-theorem-of-medians-

Question Number 94296 by mathocean1 last updated on 17/May/20 $$\mathrm{Exercise} \\ $$$$\mathrm{ABC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{triangle}.\:\mathrm{A}'\:;\:\mathrm{B}'\:;\:\mathrm{C}'\:\mathrm{are}\:\mathrm{respec}− \\ $$$$\mathrm{tively}\:\mathrm{middles}\:\mathrm{of}\:\mathrm{sides}:\:\left[\mathrm{BC}\right];\:\left[\mathrm{AC}\right]\:\mathrm{and}\:\left[\mathrm{AB}\right]. \\ $$$$\mathrm{G}\:\mathrm{is}\:\mathrm{isobarycenter}\left(\:\mathrm{situated}\:\mathrm{at}\:\mathrm{equal}\:\mathrm{distance}\right. \\ $$$$\left.\right)\:\mathrm{of}\:\mathrm{A},\:\mathrm{G}\:,\:\mathrm{and}\:\mathrm{C}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{By}\:\mathrm{using}\:\mathrm{the}\:\mathrm{theorem}\:\mathrm{of}\:\mathrm{medians}, \\ $$$$\mathrm{show}\:\mathrm{that}: \\ $$$$\mathrm{GB}^{\mathrm{2}} +\mathrm{GC}^{\mathrm{2}}…

Question-159794

Question Number 159794 by 0731619 last updated on 21/Nov/21 Commented by cortano last updated on 21/Nov/21 $$\:\frac{{d}}{{dx}}\:\left(\int\:\mathrm{2}^{{x}} \:{dx}\:\right)\:=\:\frac{{d}}{{dx}}\left({x}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{2}^{{x}} \:=\:\mathrm{2}{x} \\ $$$$\Rightarrow\:\mathrm{2}^{{x}−\mathrm{1}} \:=\:{x}…

Question-159771

Question Number 159771 by 0731619 last updated on 21/Nov/21 Commented by mr W last updated on 21/Nov/21 $${an}\:{indefinite}\:{integral}\:{in}\:{an}\:{equation} \\ $$$${means}\:{the}\:{equation}\:{is}\:{not}\:{defined}, \\ $$$${so}\:{it}\:{can}\:{not}\:{have}\:{unique}\:{solutions}. \\ $$$$\Rightarrow{question}\:{is}\:{wrong},\:{or}\:{it}\:{makes}\:{no} \\…

Question-159759

Question Number 159759 by SANOGO last updated on 21/Nov/21 Answered by puissant last updated on 21/Nov/21 $${Soit}\:{x}\:{cette}\:{largeur}.. \\ $$$${en}\:{effet}\:,\:{la}\:{longueur}\:{restante}\:{est}\: \\ $$$$\mathrm{4}−{x}\:{et}\:{la}\:{largeur}\:{restante}\:{est}\:\mathrm{3}−{x} \\ $$$${Ainsi}\:{l}'{aire}\:{restante}\:{est}\:\left(\mathrm{4}−{x}\right)\left(\mathrm{3}−{x}\right) \\ $$$$\Rightarrow\:\mathscr{A}_{{r}}…

Find-f-0-when-a-polynomial-f-x-satisfies-lim-x-1-f-x-x-2-1-2-lim-x-1-f-x-x-2-1-2-lim-x-f-x-x-4-1-pls-Help-

Question Number 94214 by abony1303 last updated on 17/May/20 $${Find}\:{f}\left(\mathrm{0}\right)\:{when}\:{a}\:{polynomial}\:{f}\left({x}\right)\:{satisfies} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{f}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}=\mathrm{2} \\ $$$$\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\:\:\frac{{f}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}=\mathrm{2}\:\: \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\:\frac{{f}\left({x}\right)}{{x}^{\mathrm{4}} }\:=\mathrm{1}\:\:\:\:\:\:\:\:{pls}\:{Help}! \\ $$ Commented…

Question-94212

Question Number 94212 by abony1303 last updated on 17/May/20 Answered by john santu last updated on 17/May/20 $$\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)=\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}f}\left(\mathrm{x}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{1}^{−} }…