Menu Close

Category: None

Question-164783

Question Number 164783 by mkam last updated on 21/Jan/22 Answered by Mathspace last updated on 21/Jan/22 $$={lim}_{{x}\rightarrow\mathrm{3}} \frac{{f}\left({x}\right)−{f}\left(\mathrm{3}\right)}{{x}−\mathrm{3}}×\frac{{x}−\mathrm{3}}{\left({x}−\mathrm{3}\right)\left({x}+\mathrm{3}\right)} \\ $$$$={lim}_{{x}\rightarrow\mathrm{3}} \frac{{f}\left({x}\right)−{f}\left(\mathrm{3}\right)}{{x}−\mathrm{3}}×{lim}_{{x}\rightarrow\mathrm{3}} \frac{\mathrm{1}}{{x}+\mathrm{3}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}{f}^{'} \left(\mathrm{3}\right)…

In-a-class-of-70-students-6-offer-economices-only-18-offer-economics-but-not-mathematics-36-offer-economics-and-geography-53-offer-economics-50-offer-Geography-and-34-offer-mathematics-and-g

Question Number 99232 by otchereabdullai@gmail.com last updated on 19/Jun/20 $$\mathrm{In}\:\mathrm{a}\:\mathrm{class}\:\mathrm{of}\:\:\mathrm{70}\:\mathrm{students},\:\mathrm{6}\:\mathrm{offer}\: \\ $$$$\mathrm{economices}\:\mathrm{only},\:\mathrm{18}\:\mathrm{offer}\:\mathrm{economics}\: \\ $$$$\mathrm{but}\:\mathrm{not}\:\mathrm{mathematics},\:\mathrm{36}\:\mathrm{offer}\: \\ $$$$\mathrm{economics}\:\mathrm{and}\:\mathrm{geography},\:\mathrm{53}\:\mathrm{offer}\: \\ $$$$\mathrm{economics},\:\mathrm{50}\:\mathrm{offer}\:\mathrm{Geography}\:\mathrm{and}\:\mathrm{34} \\ $$$$\mathrm{offer}\:\mathrm{mathematics}\:\mathrm{and}\:\mathrm{geography},\:\mathrm{all}\: \\ $$$$\mathrm{students}\:\mathrm{off}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{subject}. \\ $$$$\left.\mathrm{a}\right)\:\mathrm{illustrate}\:\mathrm{the}\:\mathrm{information}\:\mathrm{on}\:\mathrm{a}\:\mathrm{venn} \\…

dx-x-1-3-x-

Question Number 33690 by mondodotto@gmail.com last updated on 22/Apr/18 $$\int\frac{\boldsymbol{\mathrm{dx}}}{\:\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{x}}}} \\ $$ Answered by math1967 last updated on 22/Apr/18 $${let}\:{x}={z}^{\mathrm{6}} \:\:\therefore{dx}=\mathrm{6}{z}^{\mathrm{5}} {dz} \\ $$$$\mathrm{6}\int\frac{{z}^{\mathrm{5}} {dz}}{{z}^{\mathrm{2}}…

given-that-f-x-1-2-10-x-10-x-prove-that-2f-x-f-y-f-x-y-f-x-y-

Question Number 33688 by mondodotto@gmail.com last updated on 22/Apr/18 $$\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{10}^{\boldsymbol{{x}}} +\mathrm{10}^{−\boldsymbol{{x}}} \right)\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}} \\ $$$$\mathrm{2}\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{y}}\right)=\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)+\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}\right) \\ $$ Answered by Rasheed.Sindhi last updated on 22/Apr/18…

Question-164753

Question Number 164753 by akolade last updated on 21/Jan/22 Answered by som(math1967) last updated on 21/Jan/22 $${Xlog}_{\mathrm{5}} \mathrm{5}×\mathrm{12} \\ $$$$={X}\left({log}_{\mathrm{5}} \mathrm{5}+{log}_{\mathrm{5}} \mathrm{12}\right) \\ $$$$={log}_{\mathrm{12}} \mathrm{5}\left(\mathrm{1}+{log}_{\mathrm{5}}…

Let-a-b-c-are-positive-real-numbers-such-that-1-a-1-b-1-c-3-Prove-that-a-b-c-4-1-abc-2-1-3-5-

Question Number 33681 by naka3546 last updated on 22/Apr/18 $${Let}\:\:{a},\:{b},\:{c}\:\:\:{are}\:\:{positive}\:{real}\:\:{numbers}\:\:{such}\:\:{that}\:\:\:\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}}\:\:=\:\:\mathrm{3}\:. \\ $$$${Prove}\:{that}\::\:\:\:{a}\:+\:{b}\:+\:{c}\:\:+\:\:\frac{\mathrm{4}}{\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\left({abc}\right)^{\mathrm{2}} }}\:\:\:\geqslant\:\:\mathrm{5} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

from-sinhu-tan-prove-that-i-tanh-u-2-tan-2-ii-coshu-sec-iii-u-log-sec-tan-iv-tanhu-sin-

Question Number 33660 by mondodotto@gmail.com last updated on 21/Apr/18 $$\:\boldsymbol{\mathrm{from}}\:\boldsymbol{\mathrm{sinh}{u}}=\boldsymbol{\mathrm{tan}\vartheta} \\ $$$$\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}} \\ $$$$\left(\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{tanh}}\frac{\boldsymbol{\mathrm{u}}}{\mathrm{2}}=\boldsymbol{\mathrm{tan}}\frac{\boldsymbol{\vartheta}}{\mathrm{2}} \\ $$$$\:\left(\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{cosh}{u}}=\boldsymbol{\mathrm{sec}\vartheta} \\ $$$$\:\left(\boldsymbol{\mathrm{iii}}\right)\boldsymbol{\mathrm{u}}=\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{sec}\vartheta}+\boldsymbol{\mathrm{tan}\vartheta}\right) \\ $$$$\:\left(\boldsymbol{\mathrm{iv}}\right)\boldsymbol{\mathrm{tanh}{u}}=\boldsymbol{\mathrm{sin}\vartheta} \\ $$ Answered by tanmay.chaudhury50@gmail.com…

Qn-a-given-A-and-B-are-disjoint-sets-shade-in-venn-diagram-i-B-C-ii-A-B-C-iii-B-C-A-Qn-b-Given-that-A-19-B-23-C-24-A-B-30-A-B-C-5-B-C-10-A-B-20-and-C-A-B-

Question Number 33663 by mondodotto@gmail.com last updated on 21/Apr/18 $$\:\boldsymbol{\mathrm{Qn}}:\left(\boldsymbol{\mathrm{a}}\right) \\ $$$$\:\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{A}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{B}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{disjoint}}\:\boldsymbol{\mathrm{sets}} \\ $$$$\:\boldsymbol{\mathrm{shade}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{venn}}\:\boldsymbol{\mathrm{diagram}} \\ $$$$\:\left(\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{B}}\cap\boldsymbol{\mathrm{C}}\:\left(\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{A}}−\left(\boldsymbol{\mathrm{B}}\cup\boldsymbol{\mathrm{C}}\right)\:\left(\boldsymbol{\mathrm{iii}}\right)\left(\boldsymbol{\mathrm{B}}\cup\boldsymbol{\mathrm{C}}\right)−\boldsymbol{\mathrm{A}} \\ $$$$\:\boldsymbol{\mathrm{Qn}}:\left(\boldsymbol{\mathrm{b}}\right) \\ $$$$\:\boldsymbol{\mathrm{G}}\mathrm{i}\boldsymbol{\mathrm{ven}}\:\boldsymbol{\mathrm{that}}\:\mid\boldsymbol{\mathrm{A}}\mid=\mathrm{19}\:\mid\boldsymbol{\mathrm{B}}\mid=\mathrm{23}\:\mid\boldsymbol{\mathrm{C}}\mid=\mathrm{24} \\ $$$$\:\mid\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\mid=\mathrm{30}\:\mid\left(\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\right)−\boldsymbol{\mathrm{C}}\mid=\mathrm{5}\:\mid\left(\boldsymbol{\mathrm{B}}\cap\boldsymbol{\mathrm{C}}\right)\mid=\mathrm{10} \\ $$$$\:\mid\left(\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\right)^{'} \mid=\mathrm{20}\:\boldsymbol{\mathrm{and}}\:\mid\boldsymbol{\mathrm{C}}−\left(\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\right)\mid=\mathrm{10}…