Menu Close

Category: None

Question-159690

Question Number 159690 by 0731619 last updated on 20/Nov/21 Answered by MJS_new last updated on 21/Nov/21 $$\mathrm{very}\:\mathrm{obviously}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{is}\:+\infty \\ $$$$\mathrm{check}\:\mathrm{for}\:{x}=\mathrm{5} \\ $$$$\frac{\mathrm{5}^{\mathrm{5}!} }{\left(\mathrm{5}!\right)^{\mathrm{5}} }=\frac{\mathrm{5}^{\mathrm{120}} }{\mathrm{120}^{\mathrm{5}} }=\frac{\approx\mathrm{10}^{\mathrm{84}}…

lim-x-1-1-x-1-x-ln-x-Without-L-Hospital-

Question Number 94134 by naka3546 last updated on 17/May/20 $$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\:\left(\:\frac{\mathrm{1}}{{x}−\mathrm{1}}\:−\:\frac{{x}}{\mathrm{ln}\:{x}}\:\right)\:=\:… \\ $$$$\left(\:{Without}\:\:{L}'\:{Hospital}\:\right) \\ $$ Commented by $@ty@m123 last updated on 17/May/20 $${Go}\:{To}\:\:{Q}.\:{No}.\:\mathrm{87105}\: \\ $$…

find-the-relative-maximum-or-minimum-or-neither-at-the-given-critical-points-of-the-function-f-x-6x-x-2-4-4-x-2-1-2-8x-x-2-1-3-x-2-4-4-x-1-x-2-

Question Number 159669 by zakirullah last updated on 19/Nov/21 $${find}\:{the}\:{relative}\:{maximum}\:{or}\:{minimum} \\ $$$${or}\:{neither}\:{at}\:{the}\:{given}\:{critical}\: \\ $$$${points}\:{of}\:{the}\:{function}? \\ $$$${f}^{'} \left({x}\right)=\mathrm{6}{x}\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{4}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{4}} ,\:…

f-x-is-a-continuous-function-forall-real-values-of-x-and-satisfies-0-x-f-t-dt-x-1-t-2-f-t-dt-x-16-8-x-6-3-A-Find-A-

Question Number 94135 by redmiiuser last updated on 17/May/20 $${f}\left({x}\right)\:{is}\:{a}\:{continuous}\:{function}\:{forall}\:{real}\:{values}\:{of}\:{x}\:{and}\:{satisfies}\int_{\mathrm{0}} ^{{x}} {f}\left({t}\right).{dt}=\int_{{x}} ^{\mathrm{1}} {t}^{\mathrm{2}} .{f}\left({t}\right).{dt}+\frac{{x}^{\mathrm{16}} }{\mathrm{8}}+\frac{{x}^{\mathrm{6}} }{\mathrm{3}}+{A} \\ $$$${Find}\:{A}? \\ $$ Commented by john santu…

The-equation-x-2-2xp-q-0-and-x-2-2ax-b-0-have-common-roots-show-that-q-b-2-4-a-p-aq-pb-0-

Question Number 159653 by MathsFan last updated on 19/Nov/21 $$\:{The}\:{equation}\:{x}^{\mathrm{2}} +\mathrm{2}{xp}+{q}=\mathrm{0} \\ $$$$\:{and}\:{x}^{\mathrm{2}} +\mathrm{2}{ax}+{b}=\mathrm{0}\:{have}\:{common} \\ $$$${roots},\:{show}\:{that}\:\left({q}−{b}\right)^{\mathrm{2}} +\mathrm{4}\left({a}−{p}\right)\left({aq}−{pb}\right)=\mathrm{0} \\ $$$$ \\ $$ Answered by Rasheed.Sindhi last…