Question Number 164507 by mathlove last updated on 18/Jan/22 Commented by mathlove last updated on 18/Jan/22 $$\mathrm{tan}\theta=\frac{\mathrm{1}}{\mathrm{3}}\:\:{and}\:\:\:\mathrm{tan}\:\beta=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${faind}\:\:{a}\:\:{and}\:\:\:{b} \\ $$ Commented by mr W…
Question Number 98967 by M±th+et+s last updated on 17/Jun/20 $${solve}: \\ $$$$\left(\frac{\int_{\mathrm{2}} ^{\mathrm{6}} {x}\sqrt{\mathrm{1}+\mathrm{9}\lfloor{x}\rfloor^{\mathrm{2}} }{dx}}{\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left\{\frac{\mathrm{1}}{{x}}\right\}\lceil\frac{\mathrm{1}}{{x}}\rceil{dx}}\right)\left(\underset{{n}\geqslant\mathrm{1}} {\sum}\left(−\mathrm{1}\right)^{{n}} \frac{\prod_{{j}=\mathrm{1}} ^{{n}} \left(\frac{\mathrm{3}}{\mathrm{2}}−{j}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right){n}!}\right) \\ $$ Answered by…
Question Number 33410 by NECx last updated on 15/Apr/18 $${please}\:{is}\:{there}\:{any}\:{general}\:{way}\:{for} \\ $$$${calculating}\:{the}\:{error}\:{or}\:{uncertainty} \\ $$$${in}\:{g}\:{when} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{m}=\frac{\mathrm{4}\pi^{\mathrm{2}} }{{g}}\:{where}\:{m}={slope}\:{and} \\ $$$${g}={acceleration}\:{due}\:{to}\:{gravity} \\ $$$$ \\ $$$$…
Question Number 164477 by mathocean1 last updated on 17/Jan/22 $${Using}\:{the}\:{definition},\:{show}\:{that}\: \\ $$$${U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{sin}\left({k}\right)}{{k}!}\:{is}\:{a}\:{sequence}\:{of}\:{Cauchy}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 164478 by mathocean1 last updated on 17/Jan/22 $${Given}\:\begin{cases}{{u}_{\mathrm{0}} =\alpha\:\in\:\mathbb{C}}\\{{u}_{{n}+\mathrm{1}} =\frac{{u}_{{n}} +\mid{u}_{{n}} \mid}{\mathrm{2}}}\end{cases}\:;\:{n}\in\:\mathbb{N} \\ $$$${where}\:\left({u}_{{n}} \right)\:_{{n}\in\mathbb{N}} \:{is}\:{a}\:{complex}\:{sequence}. \\ $$$${Determinate}\:{the}\:{sequence}\:\left({Im}\left({u}_{{n}} \right)\right)\:_{{n}\in\mathbb{N}} \\ $$$${and}\:{calculate}\:{its}\:{limit}. \\ $$$${NB}:\:{Im}\left({u}_{{n}}…
Question Number 164473 by mathocean1 last updated on 17/Jan/22 $${Show}\:{for}\:{z}_{\mathrm{1}} ;\:{z}_{\mathrm{2}\:} \:\in\:\mathbb{C}\:{that}: \\ $$$$\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid^{\mathrm{2}} +\mid{z}_{\mathrm{1}} −{z}_{\mathrm{2}} \mid^{\mathrm{2}} =\mathrm{2}\left(\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} +\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \right). \\…
Question Number 164474 by mathocean1 last updated on 17/Jan/22 $${E}=\left\{{x}\:\in\:\mathbb{Q}_{+} :{x}^{\mathrm{2}} >\mathrm{3}\right\}.\: \\ $$$${Show}\:{that}\:{E}\:{has}\:{not}\:{lower}\:{bound} \\ $$$${in}\:\mathbb{Q}. \\ $$$$\left[{Montrez}\:{que}\:{E}\:{n}'{admet}\:{pas}\:{de}\:{borne}\right. \\ $$$$\left.{inferieure}\:{dans}\:\mathbb{Q}\right] \\ $$ Terms of Service…
Question Number 164475 by mathocean1 last updated on 17/Jan/22 $${Etudiez}\:\:{la}\:{convergence}\:{de}\:{de}\:{la} \\ $$$${suite}\:{U}_{{n}} =\frac{\mathrm{1}+{cos}\left({n}\right)+\mathrm{2}{n}}{{ni}+\sqrt{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}}\:;\:{n}\:\in\:\mathbb{N}. \\ $$$$\left[{study}\:{the}\:{convergence}\:{of}\:{U}_{{n}} \right] \\ $$ Answered by puissant last updated on 19/Jan/22…
Question Number 164471 by SANOGO last updated on 17/Jan/22 $$\:{une}\:{primitive}\:{de}\:{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$$${puis}\:{la}\:{convergence}\:{de}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$ Answered by Ar Brandon last updated on…
Question Number 98913 by mr W last updated on 17/Jun/20 $${solve} \\ $$$${f}\:'\left({x}\right)={f}\left({f}\left({x}\right)\right) \\ $$ Commented by john santu last updated on 17/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{Kx}^{\beta} \\…