Menu Close

Category: None

form-f-x-y-z-xy-c-x-c-y-z-in-standard-SOP-form-and-canonical-SOP-form-

Question Number 157725 by joki last updated on 27/Oct/21 $$\mathrm{form}\:\mathrm{f}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:=\left(\left(\mathrm{xy}\right)'\mathrm{c}\right)'\left(\left(\mathrm{x}'+\mathrm{c}\right)\left(\mathrm{y}'+\mathrm{z}'\right)\right)'\: \\ $$$$\mathrm{in}\:\mathrm{standard}\:\mathrm{SOP}\:\mathrm{form}\:\mathrm{and}\:\mathrm{canonical}\:\mathrm{SOP}\:\mathrm{form} \\ $$ Answered by Kunal12588 last updated on 27/Oct/21 $$\left[\left({xy}\right)'{c}\right]'\left[\left({x}'+{c}\right)\left({y}'+{z}'\right)\right]' \\ $$$$=\left[\left(\left({xy}\right)'\right)'+{c}'\right]\left[\left({x}'+{c}\right)'+\left({y}'+{z}'\right)'\right] \\…

x-12-log-3-x-x-18-log-2-x-find-x-

Question Number 92179 by otchereabdullai@gmail.com last updated on 05/May/20 $$\left(\frac{\mathrm{x}}{\mathrm{12}}\right)^{\mathrm{log}_{\sqrt{\mathrm{3}}} \mathrm{x}} =\left(\frac{\mathrm{x}}{\mathrm{18}}\right)^{\mathrm{log}_{\sqrt{\mathrm{2}}} \mathrm{x}} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$ Commented by john santu last updated on 05/May/20…

Given-x-1-1-x-2-x-3-is-a-real-numbers-sequence-for-n-1-with-recurrence-relation-x-n-1-x-n-1-2x-n-x-is-expressed-as-the-largest-integer-of-x-25x

Question Number 157660 by naka3546 last updated on 26/Oct/21 $${Given}\:\:{x}_{\mathrm{1}} \:=\:\mathrm{1},\:{x}_{\mathrm{2}} \:,\:{x}_{\mathrm{3}} \:,\:\ldots,\:{is}\:\:{a}\:\:{real}\:\:{numbers}\:\:{sequence}\:\:{for}\:\:{n}\:\geqslant\:\mathrm{1}\:\:{with}\:\: \\ $$$${recurrence}\:\:{relation}\:\:{x}_{{n}+\mathrm{1}} \:−\:{x}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{2}{x}_{{n}} }\:\:. \\ $$$$\left[{x}\right]\:\:{is}\:\:{expressed}\:\:{as}\:\:{the}\:\:{largest}\:\:{integer}\:\:{of}\:\:{x}\:\:. \\ $$$$\left[\mathrm{25}{x}_{\mathrm{625}} \right]\:\:=\:\:? \\ $$…

If-9-2x-1-81-x-2-3x-find-x-

Question Number 92118 by otchereabdullai@gmail.com last updated on 04/May/20 $$\mathrm{If}\:\:\mathrm{9}^{\mathrm{2x}+\mathrm{1}\:\:\:} =\:\:\frac{\mathrm{81}^{\mathrm{x}−\mathrm{2}} }{\mathrm{3x}}\:\:.\:\:\:\:\:\:\:\:\:\:\:\mathrm{find}\:\mathrm{x} \\ $$ Commented by john santu last updated on 05/May/20 $$\mathrm{9}^{\mathrm{2x}+\mathrm{1}} \:=\:\frac{\mathrm{81}^{\mathrm{x}−\mathrm{2}} }{\mathrm{3}^{\mathrm{x}}…