Menu Close

Category: None

for-solving-equation-which-one-we-use-and-i-mean-where-we-use-and-where-we-use-and-where-we-use-one-of-them-to-consider-wrong-

Question Number 157272 by zakirullah last updated on 21/Oct/21 $${for}\:{solving}\:{equation}\:{which}\:{one}\:{we}\:{use} \\ $$$$\Rightarrow\:{and}\:=,\:{i}\:{mean}\:{where}\:{we}\:{use}\:\Rightarrow\:{and}\:{where}\:{we}\:{use},\:= \\ $$$${and}\:{where}\:{we}\:{use}\:{one}\:{of}\:{them}\:{to} \\ $$$${consider}\:{wrong}. \\ $$ Answered by TheHoneyCat last updated on 21/Oct/21…

Question-26200

Question Number 26200 by mubeen897@hotmail.com last updated on 22/Dec/17 Answered by ajfour last updated on 22/Dec/17 $$\left(\mathrm{0}.\mathrm{2}×\mathrm{10}\right)+\mathrm{10}+\left(\mathrm{0}.\mathrm{2}×\mathrm{20}\right)−\mathrm{30}+ \\ $$$$\:\:\:\:\:\:\:\mathrm{0}.\mathrm{5}{R}+\left(\mathrm{0}.\mathrm{5}×\mathrm{10}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2}+\mathrm{10}+\mathrm{4}−\mathrm{30}+\mathrm{0}.\mathrm{5}{R}+\left[×\right]+\mathrm{5}=\mathrm{0} \\ $$$${or}\:\:\:\:\:\mathrm{0}.\mathrm{5}{R}\:=\:\mathrm{9}\:\:\:\Rightarrow\:\:\:{R}=\mathrm{18}\Omega\:. \\ $$…

Question-91690

Question Number 91690 by zainal tanjung last updated on 02/May/20 Commented by zainal tanjung last updated on 03/May/20 $$\mathrm{Hint}=\mathrm{Formula} \\ $$$$\bullet\:\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\bullet\:\:\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$\bullet\:\left[\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}\right]^{\mathrm{2}}…

lim-x-n-n-n-1-n-lim-x-0-tan-4x-tan-4x-

Question Number 157216 by Khalmohmmad last updated on 21/Oct/21 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =? \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{tan}\:\mathrm{4}{x}}}{\mathrm{tan}\sqrt{\mathrm{4}{x}}}=? \\ $$ Commented by cortano last updated on 21/Oct/21…

find-the-limits-of-1-u-n-k-1-n-n-n-2-k-2-2-v-n-k-1-n-1-n-2-2kn-

Question Number 91667 by Ar Brandon last updated on 02/May/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{of}\: \\ $$$$\mathrm{1}.\:\mathrm{u}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} }\:\:\: \\ $$$$\mathrm{2}.\:\mathrm{v}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}^{\mathrm{2}} +\mathrm{2kn}}} \\…