Question Number 25407 by NECx last updated on 09/Dec/17 $${Please}\:{can}\:{I}\:{get}\:{any}\:{link}\:{for} \\ $$$${downloading}\:{RD}\:{SHARMA}\:{class} \\ $$$${XI}\:{mathematics}\:{textbook}. \\ $$$$ \\ $$$${Thanks}. \\ $$ Commented by prakash jain last…
Question Number 156475 by SANOGO last updated on 11/Oct/21 $${soit}:\int_{{o}} ^{{x}} {f}\left({t}\right)={x}+\int_{\mathrm{0}} ^{{x}} {t}^{\mathrm{2}} {f}\left({t}\right){dt} \\ $$$${determiner}\:{f}\left(\mathrm{1}\right) \\ $$ Commented by SANOGO last updated on…
Question Number 25397 by naka3546 last updated on 09/Dec/17 $${Let}\:\:{y}\:\:=\:\:{f}\:\left({x}\right) \\ $$$$\:\:\:\:{f}\:\left(\mathrm{0}\right)\:\:=\:\:\mathrm{5} \\ $$$${f}\:'\left({x}\right)\:\:=\:\:−\mathrm{3}{x}\:+\:\mathrm{2}\:\underset{\mathrm{0}} {\int}\overset{\mathrm{2}} {\:}{f}\:\left({x}\right)\:{dx} \\ $$$${Find}\:\:{the}\:\:{maximum}\:\:{value}\:\:{of}\:\:\:\boldsymbol{{y}}\:\:=\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:. \\ $$$$ \\ $$ Commented by prakash…
Question Number 90918 by mr W last updated on 26/Apr/20 $${do}\:{you}\:{all}\:{get}\:{notifications}\:{when} \\ $$$${your}\:{posts}\:{get}\:{updated}? \\ $$$${i}\:{don}'{t}\:{get}\:{any}\:{notification}.\:{so}\:{i}\:{don}'{t} \\ $$$${know}\:{if}\:{a}\:{post}\:{of}\:{mine}\:{is}\:{updated}\:{or} \\ $$$${not},\:{very}\:{uncomfortable}. \\ $$ Commented by I want…
Question Number 156455 by SANOGO last updated on 11/Oct/21 Commented by prakash jain last updated on 11/Oct/21 $$\mathrm{0} \\ $$ Commented by SANOGO last updated…
Question Number 90914 by liki last updated on 26/Apr/20 Commented by liki last updated on 26/Apr/20 $$\mathrm{qn}\:\mathrm{1a} \\ $$ Commented by mr W last updated…
Question Number 90911 by liki last updated on 26/Apr/20 Commented by liki last updated on 26/Apr/20 $$\mathrm{sory}\:\mathrm{all}\:,\mathrm{is}\:\mathrm{this}\:\mathrm{qiestion}\:\mathrm{same}\:\mathrm{as}\:\mathrm{find}\:\mathrm{lcm}? \\ $$ Commented by mr W last updated…
Question Number 156432 by joki last updated on 11/Oct/21 $$\mathrm{in}\:\mathrm{a}\:\mathrm{second}\:\mathrm{order}\:\mathrm{differenti}\:\mathrm{equation},\:\mathrm{a}\:\mathrm{4}\:\mathrm{henry} \\ $$$$\mathrm{inductor},\mathrm{an}\:\mathrm{8}\:\mathrm{ohm}\:\mathrm{resistor}\:\mathrm{and}\:\mathrm{o}.\mathrm{2}\:\mathrm{farad}\:\mathrm{capacito} \\ $$$$\mathrm{are}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{series}\:\mathrm{with}\:\mathrm{the}\:\mathrm{temperature}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{battery}\:\mathrm{with}\:\mathrm{ggl}.\:\mathrm{E}=\mathrm{80}\:\mathrm{sin}\:\mathrm{3t}.\:\mathrm{solid}=\mathrm{0}\:\mathrm{the} \\ $$$$\mathrm{charge}\:\mathrm{in}\:\mathrm{the}\:\mathrm{capacitor}\:\mathrm{and}\:\mathrm{the}\:\mathrm{current}\:\mathrm{in}\:\mathrm{the}\: \\ $$$$\mathrm{circuit}\:\mathrm{is}\:\mathrm{zero}. \\ $$$$\mathrm{a}.\mathrm{charge} \\ $$$$\mathrm{b}.\mathrm{current}\:\mathrm{at}\:\mathrm{t}>\mathrm{0} \\…
Question Number 156426 by ZiYangLee last updated on 11/Oct/21 $$\mathrm{Given}\:\mathrm{that}\:\mathrm{tan}\:\alpha\:\mathrm{and}\:\mathrm{tan}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} +\mathrm{3}{ax}+\mathrm{4}{a}+\mathrm{1}=\mathrm{0},\: \\ $$$$\mathrm{where}\:{a}>\mathrm{1}\:\mathrm{and}\:\alpha,\beta\in\left(−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\right).\: \\ $$$$\mathrm{Evaluate}\:\mathrm{tan}\left(\frac{\alpha+\beta}{\mathrm{2}}\right). \\ $$ Answered by mr W last updated…
Question Number 156422 by SANOGO last updated on 11/Oct/21 Commented by cortano last updated on 11/Oct/21 $$\:\mathrm{let}\:\mathrm{x}=\mathrm{t}^{\mathrm{6}} \:\rightarrow\mathrm{dx}=\mathrm{6t}^{\mathrm{5}} \:\mathrm{dt} \\ $$$$\mathrm{I}=\int\:\frac{\mathrm{t}^{\mathrm{3}} }{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }\:\left(\mathrm{6t}^{\mathrm{5}} \:\mathrm{dt}\right) \\…