Question Number 25184 by lucky singh last updated on 05/Dec/17 $${if}\:{a}\:{and}\:{b}\:{are}\:{the}\:{root}\:{of}\:{the}\:{quadratic}\:{equation}\:{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}\:{then}\:{find}\:{the}\:{value}\:{of}\:\alpha^{\mathrm{2}} /\beta+\beta^{\mathrm{2}} /\alpha \\ $$ Commented by prakash jain last updated on 05/Dec/17 $${x}^{\mathrm{2}}…
Question Number 156244 by Eric002 last updated on 09/Oct/21 $${solve}\:{the}\:{pairs}\:{of}\:{simultaneous}\:{equations} \\ $$$${ax}−\mathrm{2}{y}=\mathrm{2} \\ $$$${x}+\mathrm{3}{y}=\mathrm{3} \\ $$$${qy}−{px}=\left({q}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)/{pq} \\ $$$${py}+{qx}=\mathrm{2} \\ $$ Answered by MJS_new…
Question Number 156240 by SANOGO last updated on 09/Oct/21 $$\underset{\frac{−\pi}{\mathrm{2}}} {\int}^{\frac{\pi}{\mathrm{2}}} \mid{sin}\left({x}\right)\mid\:{dx} \\ $$$$\underset{\mathrm{0}} {\int}^{\pi} \mid{cos}\left({x}\right)\mid{dx} \\ $$ Commented by SANOGO last updated on 09/Oct/21…
Question Number 156205 by 0731619 last updated on 09/Oct/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 25129 by mondodotto@gmail.com last updated on 04/Dec/17 Commented by mondodotto@gmail.com last updated on 04/Dec/17 $$\mathrm{roman}\:\left(\mathrm{iv}\right)\:\mathrm{please}\:\mathrm{help} \\ $$ Answered by ajfour last updated on…
Question Number 156188 by naka3546 last updated on 09/Oct/21 $${Given}\:\:{a}\:\:{rational}\:\:{function} \\ $$$$\:\:\:\:\:{f}\left({x}\right)\:=\:\:\frac{{ax}^{\mathrm{2}} +{bx}+{c}}{{x}+{q}} \\ $$$${has}\:\:{minimum}\:\:{point}\:\:{at}\:\left(−\mathrm{2},\mathrm{9}\right)\:\:{and}\:\:{maximum}\:\:{point}\:\:{at}\:\:\left(\mathrm{2},\mathrm{1}\right)\:. \\ $$$${Find}\:\:{value}\:\:{of}\:\:{a},\:{b},\:{c},\:\:{and}\:\:{q}\:. \\ $$ Commented by MJS_new last updated on…
Question Number 156178 by aliibrahim1 last updated on 08/Oct/21 Answered by MathsFan last updated on 08/Oct/21 $$\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 90609 by Maclaurin Stickker last updated on 25/Apr/20 $${find}\:{the}\:{infinite}\:{sum}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{F}_{{n}} }{\mathrm{2}^{{n}} }\: \\ $$$${where}\:{F}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} −\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} \\ $$ Commented by abdomathmax last…
Question Number 156136 by SANOGO last updated on 08/Oct/21 $${soit}\:{E}\left({x}\right)\:{la}\:{partie}\:{entiere}\:,{p}<{q} \\ $$$${alors}\:{la}\:{valeur}\:{de}\: \\ $$$$\underset{{p}} {\int}^{{q}} {E}\left({x}\right){dx}\:=? \\ $$ Answered by KONE last updated on 10/Oct/21…
Question Number 156138 by SANOGO last updated on 08/Oct/21 $${la}\:{valeur}\:{de}\:{l}'{integrale} \\ $$$$\underset{{o}} {\int}^{\mathrm{1}} {x}\sqrt{\sqrt{\sqrt{{x}}}} \\ $$$$ \\ $$ Commented by cortano last updated on 08/Oct/21…