Menu Close

Category: None

Question-153769

Question Number 153769 by SANOGO last updated on 10/Sep/21 Answered by puissant last updated on 10/Sep/21 $${On}\:{remarque}\:{que}\:{z}=\mathrm{0}\:{est}\:{solution}\:{de}\: \\ $$$${l}'{equation}.\:{supposons}\:{z}\neq\mathrm{0}.\:{En}\:{prenant} \\ $$$${les}\:{modules},\:{on}\:{a}: \\ $$$$\mid{z}\mid^{\mathrm{5}} =\mid\bar {{z}}\mid=\mid{z}\mid\:\Rightarrow\:\mid{z}\mid^{\mathrm{6}}…

sin-2-4x-cos-4x-dx-

Question Number 153760 by ZiYangLee last updated on 10/Sep/21 $$\int\:\mathrm{sin}^{\mathrm{2}} \mathrm{4}{x}\:\mathrm{cos}\:\mathrm{4}{x}\:{dx}= \\ $$ Answered by puissant last updated on 10/Sep/21 $$=\int{sin}^{\mathrm{2}} \mathrm{4}{x}\:{cos}\mathrm{4}{x}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{sin}\mathrm{4}{x}\:{sin}\mathrm{8}{x}\:{dx} \\…

find-radi-of-circle-s-that-tangents-to-corves-y-x-1-y-2-x-y-1-x-2-

Question Number 88204 by behi83417@gmail.com last updated on 09/Apr/20 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{radi}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{circle}}\left(\boldsymbol{\mathrm{s}}\right)\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{tangents}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{corves}}\::\begin{cases}{\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{x}}\pm\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}^{\mathrm{2}} }}\\{\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{y}}\pm\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }}\end{cases} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Given-that-7-cos-2-24-sin-2-R-cos-2-where-R-gt-0-and-0-lt-lt-pi-2-find-the-maximum-value-of-14-cos-2-48-sin-cos-

Question Number 153736 by ZiYangLee last updated on 09/Sep/21 $$\mathrm{Given}\:\mathrm{that}\:\mathrm{7}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{24}\:\mathrm{sin}^{\mathrm{2}} \theta={R}\:\mathrm{cos}\left(\mathrm{2}\theta−\alpha\right), \\ $$$$\mathrm{where}\:{R}>\mathrm{0}\:\mathrm{and}\:\mathrm{0}<\alpha<\frac{\pi}{\mathrm{2}},\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{14}\:\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{48}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta. \\ $$ Answered by mr W last updated on…

Show-that-0-pi-2-1-cos-3-sin-2-d-1-3-

Question Number 153737 by ZiYangLee last updated on 09/Sep/21 $$\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\left(\mathrm{cos}\:\theta+\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} }\:{d}\theta=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}\:} \\ $$ Answered by puissant last updated on 09/Sep/21 $$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\left[\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}{cos}\theta+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{sin}\theta\right)\right]^{\mathrm{2}}…

Question-153696

Question Number 153696 by SANOGO last updated on 09/Sep/21 Answered by puissant last updated on 09/Sep/21 $${x}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +{k}} \\ $$$${Calcul}\:{des}\:\mathrm{5}\:{premiers}\:{termes}.. \\ $$$$\rightarrow\:{x}_{\mathrm{1}}…