Question Number 153626 by otchereabdullai@gmail.com last updated on 08/Sep/21 $$\mathrm{Ten}\:\mathrm{eggs}\:\mathrm{are}\:\mathrm{picked}\:\mathrm{at}\:\mathrm{random}\:\mathrm{without} \\ $$$$\mathrm{replacement}\:\mathrm{from}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{containing}\: \\ $$$$\mathrm{20\%}\:\mathrm{defective}\:\mathrm{eggs}.\: \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\: \\ $$$$\mathrm{at}\:\mathrm{least}\:\mathrm{four}\:\mathrm{defective}\:\mathrm{eggs} \\ $$ Answered by mr W last…
Question Number 153616 by Riyoziyot last updated on 08/Sep/21 Commented by MJS_new last updated on 09/Sep/21 $$\mathrm{let}\:\mathrm{me}\:\mathrm{know}\:\mathrm{which}\:\mathrm{solution}\:\mathrm{you}\:\mathrm{like}\:\mathrm{the}\:\mathrm{best} \\ $$$$\mathrm{and}\:\mathrm{I}'\mathrm{ll}\:\mathrm{find}\:\mathrm{a}\:\mathrm{zillion}\:\mathrm{functions}\:\mathrm{providing} \\ $$$$\mathrm{this}\:\mathrm{solution} \\ $$ Terms of…
Question Number 22537 by Sahib singh last updated on 20/Oct/17 $${Mr}.\:{Ajfour},\:{you}\:{are}\:{very} \\ $$$${good}\:{at}\:{solving}\:{difficult} \\ $$$${questions}.{How}\:{do}\:{you} \\ $$$${do}\:{that}\:?\:{Please}\:{tell}\:{us}\: \\ $$$${something}\:{about}\:{yourself}. \\ $$$$ \\ $$ Commented by…
Question Number 153611 by saly last updated on 08/Sep/21 Answered by Ar Brandon last updated on 08/Sep/21 $${A}=\int\frac{\mathrm{3sin}{x}+\mathrm{2cos}{x}}{\mathrm{3cos}{x}+\mathrm{2sin}{x}}{dx} \\ $$$$\:\:\:\:=\int\frac{\mathrm{2cos}{x}−\mathrm{3sin}{x}}{\mathrm{2sin}{x}+\mathrm{3cos}{x}}{dx}+\mathrm{6}\int\frac{\mathrm{sin}{x}}{\mathrm{2sin}{x}+\mathrm{3cos}{x}}{dx} \\ $$$$\:\:\:\:=\mathrm{ln}\mid\mathrm{2sin}{x}+\mathrm{3cos}{x}\mid+\mathrm{6}\int\frac{\frac{\mathrm{4}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\frac{\mathrm{4}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}}…
Question Number 153596 by SANOGO last updated on 08/Sep/21 Commented by SANOGO last updated on 08/Sep/21 $${merci}\:{bien} \\ $$ Commented by SANOGO last updated on…
Question Number 153593 by tabata last updated on 08/Sep/21 $$\boldsymbol{{Solve}}\::\:\left(\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{x}}\right)\right)!\:=\:\mathrm{2} \\ $$ Answered by puissant last updated on 08/Sep/21 $$\left({sin}\left(\mathrm{2}{x}\right)\right)!=\mathrm{2}!\:\Rightarrow\:{sin}\left(\mathrm{2}{x}\right)=\mathrm{2} \\ $$$$\Rightarrow\:\frac{{e}^{\mathrm{2}{ix}} −{e}^{−\mathrm{2}{ix}} }{\mathrm{2}{i}}=\mathrm{2} \\…
Question Number 153573 by otchereabdullai@gmail.com last updated on 08/Sep/21 $$\mathrm{A}\:\mathrm{commitee}\:\mathrm{of}\:\mathrm{5}\:\mathrm{men}\:\mathrm{and}\:\mathrm{3}\:\mathrm{women}\:\mathrm{is}\: \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{selected}\:\mathrm{from}\:\mathrm{10}\:\mathrm{men}\:\mathrm{and}\:\mathrm{8}\:\mathrm{women}. \\ $$$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{done}\:\mathrm{if} \\ $$$$\mathrm{a}\:\mathrm{particular}\:\mathrm{women}\:\mathrm{must}\:\mathrm{be}\:\mathrm{in}\:\mathrm{the}\: \\ $$$$\mathrm{committee} \\ $$ Answered by TheSupreme last updated…
In-how-many-ways-can-6-players-be-lined-up-if-2-particlar-players-must-not-stand-next-to-each-other-
Question Number 153572 by otchereabdullai@gmail.com last updated on 10/Sep/21 $$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\:\mathrm{can}\:\mathrm{6}\:\mathrm{players}\:\mathrm{be}\: \\ $$$$\mathrm{lined}\:\mathrm{up}\:\mathrm{if}\:\mathrm{2}\:\mathrm{particlar}\:\mathrm{players}\:\mathrm{must}\: \\ $$$$\mathrm{not}\:\mathrm{stand}\:\mathrm{next}\:\mathrm{to}\:\mathrm{each}\:\mathrm{other} \\ $$ Commented by Tawa11 last updated on 08/Sep/21 $$\mathrm{Let}\:\mathrm{the}\:\mathrm{players}\:\mathrm{be}\:\:\:\:\mathrm{ABCDEF} \\…
Question Number 153574 by otchereabdullai@gmail.com last updated on 08/Sep/21 $$\left.\:\mathrm{1}\right)\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{a}\:\mathrm{spherical}\:\mathrm{ballon}\:\mathrm{is}\: \\ $$$$\mathrm{increasing}\:\mathrm{at}\:\mathrm{the}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{3cms}^{−\mathrm{1}} \:.\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{rate}\:\mathrm{in}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ballon} \\ $$$$\mathrm{when}\:\mathrm{its}\:\mathrm{radius}\:\mathrm{is}\:\mathrm{10cm} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\mathrm{evaluate}\:\int\frac{\mathrm{5}}{\left(\mathrm{3x}−\mathrm{2}\right)^{\mathrm{4}} }\mathrm{dx} \\ $$ Answered…
Question Number 153563 by ZiYangLee last updated on 08/Sep/21 $$\int\:\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{2}{x}}\:}\:{dx}\:=? \\ $$ Answered by puissant last updated on 08/Sep/21 $${u}=\sqrt{\mathrm{2}{x}}\:\rightarrow\:{u}^{\mathrm{2}} =\mathrm{2}{x}\:\rightarrow\:{x}=\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\:{dx}={udu} \\ $$$${K}=\int\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{2}{x}}}{dx}=\int\frac{{u}}{\mathrm{1}+{u}}{du} \\…