Menu Close

Category: None

Find-area-of-region-that-satisfy-x-2-y-3-lt-3-

Question Number 153479 by naka3546 last updated on 07/Sep/21 $${Find}\:\:{area}\:\:{of}\:\:{region}\:\:{that}\:\:{satisfy}\:\: \\ $$$$\:\:\:\mid{x}−\mathrm{2}\mid\:+\:\mid{y}+\mathrm{3}\mid\:<\:\mathrm{3} \\ $$ Answered by aleks041103 last updated on 07/Sep/21 $${Translation}\:{doesn}'{t}\:{change}\:{the}\:{region}'{s} \\ $$$${area}.\:{Therefore}\:{we}\:{can}\:{find}\:{the}\:{area} \\…

Question-153457

Question Number 153457 by 0731619 last updated on 07/Sep/21 Answered by liberty last updated on 07/Sep/21 $${x}=\mathrm{3}\Rightarrow{p}\left(\mathrm{3}\right)=\frac{{p}\left(\mathrm{4}\right)}{\mathrm{3}}=\frac{\mathrm{12}}{\mathrm{3}}=\mathrm{4} \\ $$$${x}=\mathrm{2}\Rightarrow{p}\left(\mathrm{2}\right)=\frac{{p}\left(\mathrm{3}\right)}{\mathrm{2}}=\frac{\mathrm{4}}{\mathrm{2}}=\mathrm{2} \\ $$ Answered by Rasheed.Sindhi last…

if-t-1-t-2-are-the-extremeties-of-any-focal-chord-of-the-parabola-y-2-4ax-then-t-1-t-2-

Question Number 22388 by gopikrishnan005@gmail.com last updated on 17/Oct/17 $${if}\:{t}_{\mathrm{1}} \:,{t}_{\mathrm{2}} \:{are}\:{the}\:{extremeties}\:{of}\:{any}\:{focal}\:{chord}\:{of}\:{the}\:{parabola}\:{y}^{\mathrm{2}} =\mathrm{4}{ax},{then}\:{t}_{\mathrm{1}} {t}_{\mathrm{2}=} \\ $$ Answered by math solver last updated on 17/Oct/17 $$−\mathrm{1}.\:{do}\:{you}\:{want}\:{proof}\:?…

Question-153426

Question Number 153426 by SANOGO last updated on 07/Sep/21 Answered by puissant last updated on 07/Sep/21 $$\forall{x}\in\left[−\mathrm{1};\mathrm{1}\right]\:,\:{f}\left({x}\right)=\frac{\pi}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}.. \\ $$ Commented by SANOGO last updated…

lim-x-a-x-3-2-x-

Question Number 153422 by ZiYangLee last updated on 07/Sep/21 $$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}^{{x}} }\:= \\ $$ Answered by puissant last updated on 07/Sep/21 $$=\frac{{a}^{\mathrm{3}} }{\mathrm{2}^{{a}} }\:,\:{a}>\mathrm{0}…

Show-that-S-4pir-2-

Question Number 153409 by SOMEDAVONG last updated on 07/Sep/21 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{S}=\mathrm{4}\pi\mathrm{r}^{\mathrm{2}} \\ $$ Answered by puissant last updated on 07/Sep/21 $${S}\:{is}\:{derivate}\:{of}\:{V}.\:\:{now},\: \\ $$$${V}=\frac{\mathrm{4}}{\mathrm{3}}\pi{R}^{\mathrm{3}} . \\ $$$$\frac{\partial}{\partial{R}}{V}=\:{S}\:\Rightarrow\:{S}=\frac{\mathrm{4}}{\mathrm{3}}×\mathrm{3}\pi{R}^{\mathrm{2}}…