Menu Close

Category: None

Find-set-of-k-value-so-that-x-x-1-x-4-k-a-has-one-solution-b-has-two-solutions-c-has-many-solutions-d-has-no-solution-

Question Number 153257 by naka3546 last updated on 06/Sep/21 $${Find}\:\:{set}\:\:{of}\:\:{k}\:\:{value}\:\:{so}\:\:{that} \\ $$$$\:\:\:\:\:\:\:\mid{x}\mid\:+\:\mid{x}−\mathrm{1}\mid\:+\:\mid{x}−\mathrm{4}\mid\:=\:{k} \\ $$$${a}.\:{has}\:\:{one}\:\:{solution} \\ $$$${b}.\:{has}\:\:{two}\:\:{solutions} \\ $$$${c}.\:{has}\:\:{many}\:\:{solutions} \\ $$$${d}.\:{has}\:\:{no}\:\:{solution} \\ $$ Answered by ajfour…

Question-153249

Question Number 153249 by SANOGO last updated on 06/Sep/21 Answered by qaz last updated on 06/Sep/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{l}−\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$$$=−\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\int_{\mathrm{0}}…

Question-22174

Question Number 22174 by Adoy last updated on 12/Oct/17 Answered by $@ty@m last updated on 13/Oct/17 $$ \\ $$$$=\frac{\mathrm{4}−\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}+\sqrt{\mathrm{6}}} \\ $$$$=\frac{\mathrm{4}−\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}+\sqrt{\mathrm{6}}}×\frac{\mathrm{2}−\sqrt{\mathrm{6}}}{\mathrm{2}−\sqrt{\mathrm{6}}} \\ $$$$=\frac{\left(\mathrm{4}−\mathrm{5}\sqrt{}\mathrm{3}\right)\left(\mathrm{2}−\sqrt{\mathrm{6}}\right)}{\left(\mathrm{2}+\sqrt{\mathrm{6}}\right)\left(\mathrm{2}−\sqrt{\left.\mathrm{6}\right)}\right.} \\ $$$$=\frac{\mathrm{8}−\mathrm{4}\sqrt{}\mathrm{6}−\mathrm{10}\sqrt{\mathrm{3}}+\mathrm{5}\sqrt{\mathrm{18}}}{\mathrm{2}^{\mathrm{2}}…

Question-153239

Question Number 153239 by rexford last updated on 06/Sep/21 Answered by MJS_new last updated on 06/Sep/21 $${z}={a}+{b}\mathrm{i} \\ $$$${w}=−{b}+{a}\mathrm{i} \\ $$$${z}+{w}\mathrm{i}={a}+{b}\mathrm{i}+\left(−{b}\mathrm{i}−{a}\right)=\mathrm{0} \\ $$$${zw}=\left({a}+{b}\mathrm{i}\right)\left(−{b}+{a}\mathrm{i}\right)=−\mathrm{2}{ab}+\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{i}…

let-a-b-N-a-b-a-b-ab-a-n-a-n-1-a-explicite-a-n-en-fonction-de-a-

Question Number 153214 by pticantor last updated on 05/Sep/21 $$\boldsymbol{{let}}\:\boldsymbol{{a}},\boldsymbol{{b}}\in\mathbb{N}^{\ast} \: \\ $$$$\:\boldsymbol{{a}}\ast\boldsymbol{{b}}=\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{ab}} \\ $$$$\boldsymbol{{a}}^{\left(\boldsymbol{{n}}\right)} =\boldsymbol{{a}}^{\left(\boldsymbol{{n}}−\mathrm{1}\right)} \ast\boldsymbol{{a}} \\ $$$$\boldsymbol{{explicite}}\:\boldsymbol{{a}}^{\left(\boldsymbol{{n}}\right)} \:\boldsymbol{{en}}\:\boldsymbol{{fonction}}\:\boldsymbol{{de}}\:\boldsymbol{{a}} \\ $$$$ \\ $$$$ \\…

1-1-ln-x-dx-

Question Number 153164 by alisiao last updated on 05/Sep/21 $$\int_{−\mathrm{1}} ^{\:\mathrm{1}} \boldsymbol{{ln}}\left(\boldsymbol{\Gamma}\left(\boldsymbol{{x}}\right)\right)\:\boldsymbol{{dx}} \\ $$ Answered by Ar Brandon last updated on 05/Sep/21 $$\Omega=\int_{−\mathrm{1}} ^{\mathrm{1}} \mathrm{ln}\left(\Gamma\left({x}\right)\right){dx}=\underset{\Omega_{\mathrm{1}}…