Question Number 87614 by mary_ last updated on 05/Apr/20 $$\begin{cases}{\left({x}+{y}\right).\mathrm{2}^{{y}−\mathrm{2}{x}} =\mathrm{6}.\mathrm{25}}\\{\left({x}+{y}\right)^{\frac{\mathrm{1}}{\mathrm{2}{x}−{y}}} =\mathrm{5}}\end{cases} \\ $$ Answered by mahdi last updated on 05/Apr/20 $$\left(\mathrm{x}+\mathrm{y}\right)^{\frac{\mathrm{1}}{\mathrm{2x}−\mathrm{y}}} =\mathrm{5}\Rightarrow\left(\mathrm{x}+\mathrm{y}\right)=\mathrm{5}^{\mathrm{2x}−\mathrm{y}} \\ $$$$\left(\mathrm{x}+\mathrm{y}\right).\mathrm{2}^{\mathrm{y}−\mathrm{2x}}…
Question Number 87613 by mary_ last updated on 05/Apr/20 Commented by TANMAY PANACEA. last updated on 05/Apr/20 $${pls}\:{recheck}\:{question}… \\ $$ Answered by mind is power…
Question Number 153146 by SANOGO last updated on 05/Sep/21 Answered by puissant last updated on 05/Sep/21 $${posons}\:{u}\left({n}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}\left({n}\right)\:{et}\:{prenons}\:{f}\:{une} \\ $$$${fonction}\:{de}\:{classe}\:{C}^{\mathrm{1}} ,\:{alors}\:{posons} \\ $$$${a}\left({n}\right)=\mathrm{1}\:{pour}\:{tout}\:{n}\:{et}\:{f}\left({n}\right)=\frac{\mathrm{1}}{{n}} \\…
Question Number 22062 by x² – y²@gmail.com last updated on 10/Oct/17 Commented by FilupS last updated on 10/Oct/17 $$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{97}} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!\centerdot\left({n}+\mathrm{3}\right)!} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{97}} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!^{\mathrm{2}}…
Question Number 153127 by alisiao last updated on 04/Sep/21 Commented by alisiao last updated on 04/Sep/21 $$?????? \\ $$ Commented by alisiao last updated on…
Question Number 22051 by FilupS last updated on 10/Oct/17 $$\mathrm{I}\:\mathrm{have}\:\mathrm{recently}\:\mathrm{seen}\:\mathrm{a}\:\mathrm{different}\:\mathrm{notation} \\ $$$$\mathrm{for}\:\mathrm{integration},\:\mathrm{written}\:\mathrm{as}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int{dxf}\left({x}\right) \\ $$$${e}.{g}. \\ $$$$\:\:\:\:\:\:\int{dx}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\: \\ $$$$\mathrm{Is}\:\mathrm{this}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int{f}\left({x}\right){dx} \\…
Question Number 153105 by alisiao last updated on 04/Sep/21 $${find}\:\:\boldsymbol{{ln}}\:\boldsymbol{\Gamma}\left(\boldsymbol{{x}}\right)\:? \\ $$ Answered by puissant last updated on 04/Sep/21 $${ln}\left(\Gamma\left({x}\right)\right)=−\gamma{x}−{lnx}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{{x}}{{k}}−{ln}\left(\mathrm{1}+\frac{{x}}{{k}}\right)\right\} \\ $$$$=\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right){lnx}−{x}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi\right)+\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{2}} {\overset{\infty}…
Question Number 153093 by naka3546 last updated on 04/Sep/21 $${Find}\:\:{the}\:\:{solution}\:\:{of}\:\:{three}\:\:{variables}\:\:{equality}\:\:{system}\:\:{x},\:{y},\:{z}\:. \\ $$$$\:\:{a}^{\mathrm{3}} \:+\:{a}^{\mathrm{2}} {x}\:+\:{ay}\:+\:{z}\:=\:\mathrm{0} \\ $$$$\:\:{b}^{\mathrm{3}} \:+\:{b}^{\mathrm{2}} {x}\:+\:{by}\:+\:{z}\:=\:\mathrm{0} \\ $$$$\:\:{c}^{\mathrm{3}} \:+\:{c}^{\mathrm{2}} {x}\:+\:{cy}\:+\:{z}\:=\:\mathrm{0} \\ $$$$ \\…
Question Number 153082 by liberty last updated on 04/Sep/21 Answered by Rasheed.Sindhi last updated on 04/Sep/21 $$\frac{{L}}{{W}}=\frac{{W}}{{L}−{W}}\Rightarrow{L}^{\mathrm{2}} −{LW}={W}^{\mathrm{2}} \\ $$$$\Rightarrow\left(\frac{{L}}{{W}}\right)^{\mathrm{2}} −\frac{{L}}{{W}}−\mathrm{1}=\mathrm{0} \\ $$$$\frac{{L}}{{W}}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}\left(−\mathrm{1}\right)}}{\mathrm{2}}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${Negative}\:{value}\:{rejected}…
Question Number 153054 by daus last updated on 04/Sep/21 Answered by bobhans last updated on 04/Sep/21 $$\begin{cases}{{g}\left({x}\right)=\mathrm{1}−\mathrm{2}{x}}\\{{f}\left({x}\right)={kx}^{\mathrm{2}} +{m}}\end{cases}\:\Rightarrow\left({f}\bullet{g}\right)\left({x}\right)={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5} \\ $$$$\Rightarrow{k}\left(\mathrm{1}−\mathrm{2}{x}\right)^{\mathrm{2}} +{m}\:=\:{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5} \\ $$$$\Rightarrow{k}\left(\mathrm{4}{x}^{\mathrm{2}}…