Question Number 199382 by mokys last updated on 02/Nov/23 $${if}\:{A}\:=\:\begin{bmatrix}{{cosh}\left({x}\right)\:\:\:\:\:\:{sinh}\left({x}\right)\:}\\{{sinh}\left({x}\right)\:\:\:\:\:\:{cosh}\left({x}\right)}\end{bmatrix}{find}\:{A}^{{k}} \:? \\ $$ Answered by manxsol last updated on 02/Nov/23 $${A}^{\mathrm{2}} ={cosh}^{\mathrm{2}} −{sinh}^{\mathrm{2}} =\mathrm{1} \\…
Question Number 199368 by sonukgindia last updated on 02/Nov/23 Answered by qaz last updated on 02/Nov/23 $$\int_{−\infty} ^{+\infty} \frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx} \\ $$$$=\mathrm{2}\pi{i}\left(\left[\left({z}−{i}\right)^{−\mathrm{1}} \right]+\left[\left({z}−\mathrm{2}{i}\right)^{−\mathrm{1}}…
Question Number 199338 by sonukgindia last updated on 01/Nov/23 Answered by aleks041103 last updated on 01/Nov/23 $$\mathrm{5}^{\mathrm{2}^{{M}} } −\mathrm{1}=\left(\mathrm{5}^{\mathrm{2}^{{M}−\mathrm{1}} } \right)^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} =\left(\mathrm{5}^{\mathrm{2}^{{M}−\mathrm{1}} } +\mathrm{1}\right)\left(\mathrm{5}^{\mathrm{2}^{{M}−\mathrm{1}}…
Question Number 199362 by yaslm last updated on 01/Nov/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 199236 by SANOGO last updated on 30/Oct/23 $${calcul}\: \\ $$$$\int_{\mathrm{0}} ^{+{oo}} \frac{\mathrm{1}}{{x}^{\alpha} \:+{x}^{\beta} }{dx}\:\:\:{a}>{o} \\ $$ Answered by witcher3 last updated on 30/Oct/23…
Question Number 199215 by MrGHK last updated on 29/Oct/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 199174 by tri26112004 last updated on 29/Oct/23 Answered by ajfour last updated on 29/Oct/23 $${If}\:{i}\:{take}\:\angle{ACI}\:=\theta\:\:{then} \\ $$$$\frac{{CI}}{{HI}}=\frac{\mathrm{sin}\:\theta}{\mathrm{2}−\mathrm{sin}\:\theta} \\ $$ Commented by tri26112004 last…
Question Number 199175 by SANOGO last updated on 29/Oct/23 Answered by a.lgnaoui last updated on 29/Oct/23 $$\mathrm{g}_{\mathrm{m}} \left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{2x}}{\mathrm{m}}+\frac{\mathrm{1}}{\mathrm{m}^{\mathrm{2}} }\:\:\:\:\left(\mathrm{m}\neq\mathrm{0}\:\:\:\:\mathrm{x}\geqslant\mathrm{0}\right) \\ $$$$\:\:\:\:\mathrm{n}\:\mathrm{est}\:\mathrm{pas}\:\mathrm{une}\:\mathrm{suite}\:\mathrm{convergente} \\ $$$$\:\mathrm{preuve}: \\…
Question Number 199103 by tri26112004 last updated on 28/Oct/23 Commented by mr W last updated on 28/Oct/23 $$\sqrt[{{x}}]{\mathrm{4}}={x} \\ $$$$\mathrm{4}^{\frac{\mathrm{1}}{{x}}} ={x} \\ $$$$\mathrm{2}^{\frac{\mathrm{2}}{{x}}} ={x} \\…
Question Number 199157 by MathedUp last updated on 30/Oct/23 $$\mathrm{i}'\mathrm{m}\:\mathrm{Calculated}\:\:\mathrm{gauess}\:\mathrm{law}\:\mathrm{in}\:\mathrm{Gravity}\:\mathrm{Field} \\ $$$$ \\ $$$$\int\int_{\:\boldsymbol{{S}}} \:\hat {\boldsymbol{\mathrm{g}}}\centerdot\mathrm{d}\hat {\boldsymbol{\mathrm{S}}} \\ $$$$\hat {\boldsymbol{\mathrm{g}}}\left({x},{y},{z}\right)=−\frac{{Gmx}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} −\frac{{Gmy}}{\:\sqrt{{x}^{\mathrm{2}}…