Menu Close

Category: None

a-n-is-a-natural-number-sequence-for-n-0-that-satisfy-recurrence-relation-a-m-n-a-m-n-m-n-1-1-2-a-2m-a-2n-for-m-n-nonnegative-integers-Find-a-2016-

Question Number 157795 by naka3546 last updated on 28/Oct/21 $$\left\{{a}_{{n}} \right\}\:{is}\:{a}\:\:{natural}\:\:{number}\:\:{sequence}\:\:{for}\:\:{n}\:\geqslant\:\mathrm{0}\:\:{that}\:\:{satisfy} \\ $$$${recurrence}\:\:{relation}\:\:{a}_{{m}+{n}} \:+\:{a}_{{m}−{n}} \:−{m}+{n}\:=\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:\left({a}_{\mathrm{2}{m}} \:+{a}_{\mathrm{2}{n}} \right)\:,\:\: \\ $$$${for}\:\:\forall\:{m},{n}\:\:{nonnegative}\:\:{integers}\:. \\ $$$${Find}\:\:{a}_{\mathrm{2016}} \:. \\ $$ Answered…

look-for-a-simpler-boolean-function-in-POS-form-of-a-f-r-s-t-u-4-5-6-9-10-12-14-b-g-w-x-y-z-4-8-13-14-

Question Number 157788 by joki last updated on 27/Oct/21 $$\mathrm{look}\:\mathrm{for}\:\mathrm{a}\:\mathrm{simpler}\:\mathrm{boolean}\:\mathrm{function}\:\mathrm{in} \\ $$$$\mathrm{POS}\:\mathrm{form}\:\mathrm{of}: \\ $$$$\mathrm{a}.\mathrm{f}\left(\mathrm{r},\mathrm{s},\mathrm{t},\mathrm{u}\right)=\Pi\left(\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{9},\mathrm{10},\mathrm{12},\mathrm{14}\right) \\ $$$$\mathrm{b}.\mathrm{g}\left(\mathrm{w},\mathrm{x},\mathrm{y},\mathrm{z}\right)=\Sigma\left(\mathrm{4},\mathrm{8},\mathrm{13},\mathrm{14}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-92248

Question Number 92248 by naka3546 last updated on 05/May/20 Commented by MJS last updated on 06/May/20 $${x}=\frac{\mathrm{126}}{\:\sqrt{\mathrm{85}}} \\ $$$${EA}=\frac{\mathrm{69}}{\:\sqrt{\mathrm{85}}},\:{AF}=\frac{\mathrm{57}}{\:\sqrt{\mathrm{85}}},\:{DB}=\frac{\mathrm{28}}{\:\sqrt{\mathrm{85}}},\:{BE}=\frac{\mathrm{98}}{\:\sqrt{\mathrm{85}}} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{solving}\:\mathrm{the}\:\mathrm{3}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{3}\:\mathrm{triangles}\:{ABE},\:{AFC},\:{BCD} \\ $$…

Can-you-proof-this-intresting-identity-ln-x-x-1-n-1-2-1-x-1-2-n-

Question Number 157770 by Oberon last updated on 27/Oct/21 $$\mathrm{Can}\:\mathrm{you}\:\mathrm{proof}\:\mathrm{this}\:\mathrm{intresting}\:\mathrm{identity}? \\ $$$$\mathrm{ln}\:\mathrm{x}\:=\:\left(\mathrm{x}−\mathrm{1}\right)\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\prod}}\:\left(\frac{\mathrm{2}}{\mathrm{1}+\sqrt[{\mathrm{2}^{\mathrm{n}} }]{\mathrm{x}}}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

form-f-x-y-z-xy-c-x-c-y-z-in-standard-SOP-form-and-canonical-SOP-form-

Question Number 157725 by joki last updated on 27/Oct/21 $$\mathrm{form}\:\mathrm{f}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:=\left(\left(\mathrm{xy}\right)'\mathrm{c}\right)'\left(\left(\mathrm{x}'+\mathrm{c}\right)\left(\mathrm{y}'+\mathrm{z}'\right)\right)'\: \\ $$$$\mathrm{in}\:\mathrm{standard}\:\mathrm{SOP}\:\mathrm{form}\:\mathrm{and}\:\mathrm{canonical}\:\mathrm{SOP}\:\mathrm{form} \\ $$ Answered by Kunal12588 last updated on 27/Oct/21 $$\left[\left({xy}\right)'{c}\right]'\left[\left({x}'+{c}\right)\left({y}'+{z}'\right)\right]' \\ $$$$=\left[\left(\left({xy}\right)'\right)'+{c}'\right]\left[\left({x}'+{c}\right)'+\left({y}'+{z}'\right)'\right] \\…

x-12-log-3-x-x-18-log-2-x-find-x-

Question Number 92179 by otchereabdullai@gmail.com last updated on 05/May/20 $$\left(\frac{\mathrm{x}}{\mathrm{12}}\right)^{\mathrm{log}_{\sqrt{\mathrm{3}}} \mathrm{x}} =\left(\frac{\mathrm{x}}{\mathrm{18}}\right)^{\mathrm{log}_{\sqrt{\mathrm{2}}} \mathrm{x}} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$ Commented by john santu last updated on 05/May/20…