Menu Close

Category: None

Question-20364

Question Number 20364 by mondodotto@gmail.com last updated on 26/Aug/17 Answered by Tinkutara last updated on 26/Aug/17 $$\mathrm{59}\:=\:\mathrm{77}\:−\:\left(\mathrm{6}\:+\:\mathrm{3}{x}\right)\:+\:{x} \\ $$$$\mathrm{2}{x}\:=\:\mathrm{12} \\ $$$${x}\:=\:\mathrm{6} \\ $$ Commented by…

the-equation-y-13-y-a-has-no-linear-term-find-value-of-a-what-is-means-of-no-linear-term-please-expkain-

Question Number 151377 by zakirullah last updated on 20/Aug/21 $$\:\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}}\:\left(\boldsymbol{\mathrm{y}}+\mathrm{13}\right)\left(\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{a}}\right)\:\boldsymbol{\mathrm{has}}\:\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{linear}}\:\boldsymbol{\mathrm{term}}.\: \\ $$$$\:\:\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{a}}?\:\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{means}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{linear}}\:\boldsymbol{\mathrm{term}}.\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{expkain}}? \\ $$$$ \\ $$ Commented by mr W last updated on 20/Aug/21 $${example}:…

posons-1-2-3-n-a-n-b-n-3-montre-que-pgcd-a-n-b-n-1-

Question Number 85786 by Cmr 237 last updated on 24/Mar/20 $${posons}\: \\ $$$$\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}}\right)^{\boldsymbol{{n}}} =\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} +\boldsymbol{\mathrm{b}}_{\boldsymbol{\mathrm{n}}} \sqrt{\mathrm{3}} \\ $$$$\boldsymbol{\mathrm{montre}}\:\boldsymbol{\mathrm{que}}\:\boldsymbol{\mathrm{pgcd}}\left(\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} ;\boldsymbol{{b}}_{\boldsymbol{{n}}} \right)=\mathrm{1} \\ $$ Terms of Service…

x-2n-2-2n-x-2-n-x-1-2-n-x-m-n-m-m-n-k-0-m-1-x-k-m-n-m-z-now-if-m-is-relative-number-such-as-3-2-m-Q-x-3-2-n-help-me-

Question Number 85774 by M±th+et£s last updated on 24/Mar/20 $$\left({x}_{\mathrm{2}{n}} \right)=\mathrm{2}^{\mathrm{2}{n}} \left(\frac{{x}}{\mathrm{2}}\right)_{{n}} \left(\frac{{x}+\mathrm{1}}{\mathrm{2}}\right)_{{n}} \\ $$$$\left({x}\right)_{{m}\:{n}} ={m}^{{m}\:{n}} \underset{{k}=\mathrm{0}} {\overset{{m}=\mathrm{1}} {\prod}}\left(\frac{{x}+{k}}{{m}}\right)_{{n}} \:\:\:,\:{m}\in{z} \\ $$$${now}\:{if}\:{m}\:{is}\:{relative}\:{number}\:{such}\:{as}\frac{\mathrm{3}}{\mathrm{2}}\:,\:{m}\in{Q} \\ $$$$\left({x}\right)_{\frac{\mathrm{3}}{\mathrm{2}}{n}} =??…