Menu Close

Category: None

Evaluate-S-F-dS-Where-f-x-y-x-2-3y-2-F-x-y-z-3xe-1-2ze-2-1-y-2-e-3-plane-with-vertices-0-0-2-0-and-2-4-Oriented-in-The-negative-z-Axies-direction-

Question Number 199122 by MathedUp last updated on 28/Oct/23 $$\mathrm{Evaluate}.\int\int_{\:\boldsymbol{\mathcal{S}}} \:\hat {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\hat {\boldsymbol{\mathrm{S}}} \\ $$$$\mathrm{Where}\:{f}\left({x},{y}\right)={x}^{\mathrm{2}} −\mathrm{3}{y}+\mathrm{2}\:\:, \\ $$$$\hat {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)=\mathrm{3}{x}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +\mathrm{2}{z}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} +\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{3}}…

Please-how-can-I-search-for-old-questions-and-answers-I-need-to-see-some-things-from-my-past-accounts-

Question Number 199032 by necx122 last updated on 27/Oct/23 $${Please}\:{how}\:{can}\:{I}\:{search}\:{for}\:{old}\:{questions} \\ $$$${and}\:{answers}?\:{I}\:{need}\:{to}\:{see}\:{some}\:{things}\:{from} \\ $$$${my}\:{past}\:{accounts}. \\ $$ Commented by mr W last updated on 27/Oct/23 $${Use}\:“{Search}\:{Posts}\:{by}\:{User}''\:{in}\:\overline…

calculate-the-symmetrical-components-V-a0-V-a1-V-a2-and-V-b0-V-b1-V-b2-of-the-unbalanced-three-phase-system-with-V-a-90-90-V-b-117-0-V-c-81-225-

Question Number 198973 by Humble last updated on 26/Oct/23 $$\mathrm{calculate}\:\mathrm{the}\:\:\mathrm{symmetrical}\: \\ $$$$\mathrm{components}.\mathrm{V}_{\mathrm{a0}} \:,\mathrm{V}_{\mathrm{a1}} ,\mathrm{V}_{\mathrm{a2}} \:\:\mathrm{and}\:\mathrm{V}_{\mathrm{b0}} , \\ $$$$\mathrm{V}_{\mathrm{b1}} \:,\mathrm{V}_{\mathrm{b2}} \:\:\mathrm{of}\:\mathrm{the}\:\mathrm{unbalanced} \\ $$$$\mathrm{three}-\mathrm{phase}\:\mathrm{system}.\:\mathrm{with} \\ $$$$\:\mathrm{V}_{\mathrm{a}} =\mathrm{90}\angle\mathrm{90}°\:,\:\mathrm{V}_{\mathrm{b}}…

Calcul-determinant-3-16-24-33-1-5-7-9-5-27-36-55-7-38-51-78-

Question Number 198989 by Rodier97 last updated on 26/Oct/23 $$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Calcul}\:: \\ $$$$\begin{vmatrix}{\mathrm{3}}&{\mathrm{16}}&{\mathrm{24}}&{\mathrm{33}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{7}}&{\mathrm{9}}\\{\mathrm{5}}&{\mathrm{27}}&{\mathrm{36}}&{\mathrm{55}}\\{\mathrm{7}}&{\mathrm{38}}&{\mathrm{51}}&{\mathrm{78}}\end{vmatrix} \\ $$$$ \\ $$$$ \\ $$$$ \\…

Question-198845

Question Number 198845 by sonukgindia last updated on 25/Oct/23 Answered by som(math1967) last updated on 25/Oct/23 $${I}=\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−\mathrm{1}−{x}\right)^{\mathrm{2}} {dx}}{\mathrm{1}+{e}^{\mathrm{1}−\mathrm{1}−{x}} } \\ $$$$=\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}}…

Question-198901

Question Number 198901 by sonukgindia last updated on 25/Oct/23 Answered by witcher3 last updated on 25/Oct/23 $$\int\frac{\left(\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} }{\mathrm{6sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\mathrm{10cos}^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{e}^{\mathrm{x}} }\mathrm{dx}=\mathrm{g}\left(\mathrm{x}\right) \\ $$$$=\int\frac{\left(\mathrm{1}−\mathrm{tg}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}} }{\mathrm{6tg}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\mathrm{10e}^{\mathrm{x}} }\mathrm{dx} \\…