Menu Close

Category: None

find-singular-point-of-this-following-and-whats-the-type-of-singular-point-1-f-z-1-lnz-2-f-z-1-cos-z-i-z-z-2-1-2-3-f-z-sinz-z-2-z-4-f-z-sin2z-z-2-

Question Number 148639 by tabata last updated on 29/Jul/21 $${find}\:{singular}\:{point}\:{of}\:{this}\:{following}\:{and} \\ $$$${whats}\:{the}\:{type}\:{of}\:{singular}\:{point}\:? \\ $$$$ \\ $$$$\left(\mathrm{1}\right){f}\left({z}\right)=\frac{\mathrm{1}}{{lnz}} \\ $$$$ \\ $$$$\left(\mathrm{2}\right){f}\left({z}\right)=\frac{\mathrm{1}−{cos}\left({z}+{i}\right)}{{z}\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$ \\…

show-that-a-n-1-1-1-2-1-3-1-4-1-n-1-n-is-a-cauchy-sequence-my-attempt-let-gt-0-we-have-a-m-a-n-1-n-2-n-1-1-n-3-n-2-

Question Number 148635 by learner001 last updated on 29/Jul/21 $$\mathrm{show}\:\mathrm{that}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}:=\frac{\mathrm{1}}{\mathrm{1}!}−\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}−\frac{\mathrm{1}}{\mathrm{4}!}…+\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}!}\:\mathrm{is}\:\mathrm{a}\:\mathrm{cauchy} \\ $$$$\mathrm{sequence}. \\ $$$$\mathrm{my}\:\mathrm{attempt}: \\ $$$$\mathrm{let}\:\epsilon>\mathrm{0}\:\mathrm{we}\:\mathrm{have}\:\mid\mathrm{a}_{\mathrm{m}} −\mathrm{a}_{\mathrm{n}} \mid=\mid\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{2}} }{\left(\mathrm{n}+\mathrm{1}\right)!}+\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{3}} }{\left(\mathrm{n}+\mathrm{2}\right)!}+…+\frac{\left(−\mathrm{1}\right)^{\mathrm{m}+\mathrm{1}} }{\mathrm{m}!}\mid \\ $$$$\leqslant\mid\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{2}}…

prove-that-a-n-n-1-defined-by-a-n-1-2-1-6-1-n-n-1-is-cauchy-sequence-

Question Number 148609 by learner001 last updated on 29/Jul/21 $$\mathrm{prove}\:\mathrm{that}\:\left(\mathrm{a}_{\mathrm{n}} \right)_{\mathrm{n}\geqslant\mathrm{1}\:} \mathrm{defined}\:\mathrm{by}\:\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{6}}+…+\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}\:\mathrm{is}\: \\ $$$$\mathrm{cauchy}\:\mathrm{sequence}. \\ $$ Commented by learner001 last updated on 29/Jul/21 $$\mathrm{This}\:\mathrm{is}\:\mathrm{what}\:\mathrm{i}\:\mathrm{tried}.…

If-m-1-cos-sin-show-that-1-m-1-sin-sin-

Question Number 83037 by otchereabdullai@gmail.com last updated on 27/Feb/20 $$\mathrm{If}\:\mathrm{m}=\frac{\mathrm{1}−\mathrm{cos}\theta}{\mathrm{sin}\theta}\:,\:\:\mathrm{show}\:\mathrm{that}\:\frac{\mathrm{1}}{\mathrm{m}}=\:\frac{\mathrm{1}+\mathrm{sin}\theta}{\mathrm{sin}\theta} \\ $$ Commented by Tony Lin last updated on 27/Feb/20 $$\frac{\mathrm{1}}{{m}}=\frac{{sin}\theta}{\mathrm{1}−{cos}\theta}=\:\frac{{sin}\theta\left(\mathrm{1}+{cos}\theta\right)}{\left(\mathrm{1}−{cos}\theta\right)\left(\mathrm{1}+{cos}\theta\right)} \\ $$$$=\frac{\mathrm{1}+{cos}\theta}{{sin}\theta} \\ $$…

Question-83035

Question Number 83035 by bshahid010@gmail.com last updated on 27/Feb/20 Commented by Tony Lin last updated on 27/Feb/20 $${f}\left(\mathrm{1}\right)=\mathrm{4}{f}\left(\mathrm{0}\right)\Rightarrow{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${f}\left(\mathrm{2}\right)=\left(\sqrt{{f}\left(\mathrm{0}\right)}+\sqrt{{f}\left(\mathrm{1}\right)}\right)^{\mathrm{2}} \\ $$$$={f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right)+\mathrm{2}\sqrt{{f}\left(\mathrm{0}\right){f}\left(\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{9}}{\mathrm{4}}{f}\left(\mathrm{1}\right)=\mathrm{9}{f}\left(\mathrm{0}\right)=\mathrm{9} \\…