Question Number 198551 by HomeAlone last updated on 21/Oct/23 Commented by HomeAlone last updated on 21/Oct/23 $$\sqrt{−\mathrm{1}} \\ $$$$\mathrm{1i}\:{is}\:{useful}\:{to}\:{the}\:{lands}\:\boldsymbol{\mathrm{but}}\:\boldsymbol{\mathrm{no}} \\ $$$$\boldsymbol{{complex}}\:\boldsymbol{\theta}\pi\:−>\:{i} \\ $$$${e}_{{c}_{\mathrm{1}} } \\…
Question Number 198540 by Hridiana last updated on 21/Oct/23 $$\mathrm{values}?\:\mathrm{T}\boldsymbol{{aset}}\:\boldsymbol{\mathrm{asset}}\:\mathrm{6}\sqrt{\mathrm{4}\sqrt{\mathrm{3}\sqrt{\mathrm{3}\sqrt{\mathrm{4}}}}} \\ $$$$\sqrt{\:\boldsymbol{\mathrm{empty}}\:\sqrt{}}\boldsymbol{\mathrm{epmty}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 198536 by HomeAlone last updated on 21/Oct/23 $$\left.{eeee}\:\left\{\right\}\::\right\} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 198537 by HomeAlone last updated on 21/Oct/23 $$\mathrm{5}+{v}/\mathrm{5}{bnn} \\ $$$${case} \\ $$$$\mathrm{T}{inku}\:{Tara} \\ $$$${No}\:{ban} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 198482 by Guillaume last updated on 20/Oct/23 $${x}^{\mathrm{2}} \:+\:\mathrm{1}\:=\mathrm{0}\:{resoudre}\:{dans}\:\mathbb{C} \\ $$ Answered by Frix last updated on 21/Oct/23 $${x}^{\mathrm{2}} =−\mathrm{1} \\ $$$${x}=\pm\mathrm{i} \\…
Question Number 198483 by Guillaume last updated on 20/Oct/23 $$\left.{r}\left.{esoudre}\:{dans}\:\right]−\pi;\pi\right] \\ $$$${cosx}+{cos}\mathrm{2}{x}+{cos}\mathrm{3}{x}=\mathrm{0}\: \\ $$ Answered by Frix last updated on 21/Oct/23 $${c}=\mathrm{cos}\:{x} \\ $$$${c}+\mathrm{2}{c}^{\mathrm{2}} −\mathrm{1}+\mathrm{4}{c}^{\mathrm{3}}…
Question Number 198451 by lapache last updated on 20/Oct/23 $${Solve}\:{the}\:{EDP} \\ $$$${x}\left({y}−{z}\right)\frac{\partial{U}}{\partial{x}}+{y}\left({z}−{x}\right)\frac{\partial{U}}{\partial{y}}={z}\left({x}−{y}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 198443 by lapache last updated on 20/Oct/23 $${Proove}\: \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{m}} {\sum}}\left({xi}+{yj}\right)={m}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{xi}+{n}\underset{{j}=\mathrm{1}} {\overset{{m}} {\sum}}{yj} \\ $$ Answered by mr…
Question Number 198470 by sonukgindia last updated on 20/Oct/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 198427 by ks last updated on 19/Oct/23 Terms of Service Privacy Policy Contact: info@tinkutara.com