Question Number 148270 by abdurehime last updated on 26/Jul/21 $$\mathrm{proof}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{ellipse}\:\mathrm{at} \\ $$$$\mathrm{a}\:\mathrm{center}\left(\mathrm{0}.\mathrm{0}\right)\mathrm{is}\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }=\mathrm{1} \\ $$ Commented by abdurehime last updated on 26/Jul/21…
Question Number 148241 by 7770 last updated on 26/Jul/21 $$\:{f}:{x}\rightarrow\frac{{x}^{\mathrm{2}} +{x}−\mathrm{1}}{{x}−\mathrm{1}}\:{where}\:{x}\neq\mathrm{1} \\ $$$$\:{find}\:{the}\:{range}\:{of}\:{the}\:{function} \\ $$ Answered by Olaf_Thorendsen last updated on 26/Jul/21 $${f}\left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} +{x}−\mathrm{1}}{{x}−\mathrm{1}}\:=\:{x}+\mathrm{2}+\frac{\mathrm{1}}{{x}−\mathrm{1}} \\…
Question Number 148221 by 0731619 last updated on 26/Jul/21 Answered by Olaf_Thorendsen last updated on 26/Jul/21 $$\mathrm{N}\left({x}\right)\:=\:\mathrm{tan}^{\mathrm{2}} \left(\mathrm{tan}{x}\right)−\mathrm{tan}^{\mathrm{2}} {x} \\ $$$$\mathrm{N}\left({x}\right)\:\underset{\mathrm{0}} {\sim}\:\mathrm{tan}^{\mathrm{2}} \left({x}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{2}{x}^{\mathrm{5}} }{\mathrm{15}}\right)−\left({x}+\frac{{x}^{\mathrm{3}}…
Question Number 148207 by learner001 last updated on 26/Jul/21 $$\mathrm{any}\:\mathrm{book}\:\mathrm{on}\:\mathrm{lucas}\:\mathrm{and}\:\mathrm{fibonacci}\:\mathrm{sequence}? \\ $$ Commented by Snail last updated on 26/Jul/21 $${Just}\:{go}\:{to}\:{Wikipedia}… \\ $$ Terms of Service…
Question Number 82659 by naka3546 last updated on 23/Feb/20 Commented by naka3546 last updated on 23/Feb/20 $${area}\:\:{of}\:\:{red}\:\:{region}\:\:{is}\:\:\:… \\ $$ Commented by john santu last updated…
Question Number 148193 by abdurehime last updated on 25/Jul/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 148189 by abdurehime last updated on 25/Jul/21 Commented by abdurehime last updated on 25/Jul/21 $$\mathrm{help}\:\mathrm{me} \\ $$ Answered by Olaf_Thorendsen last updated on…
Question Number 148174 by tabata last updated on 25/Jul/21 $${find}\:{the}\:{residue}\:{of}\:\:{f}\left({z}\right)=\frac{{sin}\left({z}\right)}{{cos}\left({z}^{\mathrm{3}} \right)−\mathrm{1}} \\ $$ Answered by mathmax by abdo last updated on 25/Jul/21 $$\mathrm{cosu}\sim\mathrm{1}−\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\mathrm{cos}\left(\mathrm{z}^{\mathrm{3}} \right)\sim\mathrm{1}−\frac{\mathrm{z}^{\mathrm{6}}…
Question Number 148170 by Skabetix last updated on 25/Jul/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 148157 by aliibrahim1 last updated on 25/Jul/21 Answered by puissant last updated on 26/Jul/21 $$\mathrm{pgcd}\left(\mathrm{a};\mathrm{b}\right)=\mathrm{pgcd}\left(\mathrm{a}−\mathrm{b};\mathrm{b}\right) \\ $$$$\Rightarrow\:\mathrm{pgcd}\left(\mathrm{2}^{\mathrm{a}} −\mathrm{1};\mathrm{2}^{\mathrm{b}} −\mathrm{1}\right)=\mathrm{pgcd}\left(\mathrm{2}^{\mathrm{a}} −\mathrm{2}^{\mathrm{b}} ;\mathrm{2}^{\mathrm{b}} −\mathrm{1}\right) \\…