Menu Close

Category: None

write-to-geometry-form-3-5-4-5-i-help-plz-

Question Number 22769 by Bruce Lee last updated on 22/Oct/17 $$\boldsymbol{\mathrm{write}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{geometry}}\:\boldsymbol{\mathrm{form}} \\ $$$$\:\frac{\mathrm{3}}{\mathrm{5}}+\frac{\mathrm{4}}{\mathrm{5}}\boldsymbol{\mathrm{i}} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{plz}}\: \\ $$ Answered by $@ty@m last updated on…

Question-153800

Question Number 153800 by AliRaza123 last updated on 10/Sep/21 Answered by nadovic last updated on 10/Sep/21 $$\:\:\mathrm{Speed}\:\:=\:\:\frac{\mathrm{distance}}{\mathrm{time}} \\ $$$$\:\:\mathrm{600}\:\:=\:\:\frac{\mathrm{7200}}{{t}}\: \\ $$$$\:\:\:\:\:\:\:{t}\:\:=\:\:\frac{\mathrm{7200}}{\mathrm{600}}\: \\ $$$$\:\:\:\:\:\:\:{t}\:\:=\:\:\mathrm{12}\:{hours} \\ $$$$\:\:…

Question-153769

Question Number 153769 by SANOGO last updated on 10/Sep/21 Answered by puissant last updated on 10/Sep/21 $${On}\:{remarque}\:{que}\:{z}=\mathrm{0}\:{est}\:{solution}\:{de}\: \\ $$$${l}'{equation}.\:{supposons}\:{z}\neq\mathrm{0}.\:{En}\:{prenant} \\ $$$${les}\:{modules},\:{on}\:{a}: \\ $$$$\mid{z}\mid^{\mathrm{5}} =\mid\bar {{z}}\mid=\mid{z}\mid\:\Rightarrow\:\mid{z}\mid^{\mathrm{6}}…

sin-2-4x-cos-4x-dx-

Question Number 153760 by ZiYangLee last updated on 10/Sep/21 $$\int\:\mathrm{sin}^{\mathrm{2}} \mathrm{4}{x}\:\mathrm{cos}\:\mathrm{4}{x}\:{dx}= \\ $$ Answered by puissant last updated on 10/Sep/21 $$=\int{sin}^{\mathrm{2}} \mathrm{4}{x}\:{cos}\mathrm{4}{x}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{sin}\mathrm{4}{x}\:{sin}\mathrm{8}{x}\:{dx} \\…

find-radi-of-circle-s-that-tangents-to-corves-y-x-1-y-2-x-y-1-x-2-

Question Number 88204 by behi83417@gmail.com last updated on 09/Apr/20 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{radi}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{circle}}\left(\boldsymbol{\mathrm{s}}\right)\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{tangents}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{corves}}\::\begin{cases}{\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{x}}\pm\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}^{\mathrm{2}} }}\\{\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{y}}\pm\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }}\end{cases} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com