Question Number 147357 by Jamshidbek last updated on 20/Jul/21 $$\:\:\mathrm{If}\:\:\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:\:\mathrm{and}\:\mathrm{n}\geqslant\mathrm{1}\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{n}\centerdot\mathrm{a}_{\mathrm{n}} } \\ $$$$\mathrm{find}\:\:\mathrm{a}_{\mathrm{n}} =? \\ $$ Answered by ArielVyny last updated on 20/Jul/21…
Question Number 147328 by Mrsof last updated on 19/Jul/21 Commented by Mrsof last updated on 19/Jul/21 $${whats}\:{the}\:{right}\:{answer} \\ $$ Answered by Olaf_Thorendsen last updated on…
Question Number 147321 by Gbenga last updated on 19/Jul/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 147330 by Mrsof last updated on 19/Jul/21 Commented by Mrsof last updated on 19/Jul/21 $${choose}\:{the}\:{correct}\:{answer} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 147320 by Gbenga last updated on 19/Jul/21 $$\mathrm{16}{x}+\mathrm{9}{y}=\mathrm{1} \\ $$$${find}\:{x}\:{and}\:{y} \\ $$ Answered by floor(10²Eta[1]) last updated on 20/Jul/21 $$\mathrm{if}\:\mathrm{x},\mathrm{y}\in\mathbb{Z}: \\ $$$$\mathrm{16x}+\mathrm{9y}=\mathrm{1} \\…
Question Number 147322 by Gbenga last updated on 19/Jul/21 Commented by Mrsof last updated on 19/Jul/21 $${I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left({ax}\right)}{{x}^{\mathrm{2}} +{b}^{\mathrm{2}} }{dx}=_{{x}={z}} \mathrm{2}{I}=\int_{−\infty} ^{\:\infty} \frac{{cos}\left({az}\right)}{{z}^{\mathrm{2}} +{b}^{\mathrm{2}}…
Question Number 81763 by Khyati last updated on 15/Feb/20 $${Q}.\:{Find}\:{the}\:{minimum}\:{value}\:{of}\: \\ $$$$\mathrm{3}{cosx}\:+\:\mathrm{4}{sinx}\:+\:\mathrm{8}. \\ $$ Commented by john santu last updated on 15/Feb/20 $${f}\left({x}\right)=\:\mathrm{3cos}\:{x}+\mathrm{4sin}\:{x}+\mathrm{8} \\ $$$${f}\left({x}\right)\:=\:\sqrt{\mathrm{9}+\mathrm{16}}\:\mathrm{cos}\:\left({x}−\theta\right)+\mathrm{8}\:,\:{where}\:\theta=\mathrm{tan}^{−\mathrm{1}}…
Question Number 16220 by Mr easymsn last updated on 19/Jun/17 Answered by liday last updated on 19/Jun/17 $$\mathrm{let}\:\mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}\mathrm{n}} =\mathrm{a}\:\mathrm{then}\:\mathrm{8a}+\frac{\mathrm{8}}{\mathrm{a}}=\mathrm{63}\:\Rightarrow\mathrm{8a}^{\mathrm{2}} −\mathrm{63a}+\mathrm{8}=\mathrm{0} \\ $$$$\mathrm{a}=\frac{\mathrm{63}\pm\sqrt{\mathrm{63}^{\mathrm{2}} −\mathrm{4}×\mathrm{8}×\mathrm{8}}}{\mathrm{16}}=\frac{\mathrm{63}\pm\sqrt{\mathrm{3713}}}{\mathrm{16}} \\ $$$$\Rightarrow\mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}\mathrm{n}}…
Question Number 147290 by tabata last updated on 19/Jul/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 81733 by naka3546 last updated on 15/Feb/20 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{n}}{\left({n}+\mathrm{1}\right)\centerdot\mathrm{5}^{{n}} }\:\:=\:\:? \\ $$ Commented by mr W last updated on 15/Feb/20 $$\frac{\mathrm{1}}{\mathrm{1}−{x}}=\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}}…