Menu Close

Category: None

dx-x-3-1-

Question Number 81684 by naka3546 last updated on 14/Feb/20 $$\int\:\:\:\frac{{dx}}{{x}^{\mathrm{3}} \:+\:\mathrm{1}}\:\:=\:\:… \\ $$ Commented by Tony Lin last updated on 14/Feb/20 $$\int\:\frac{{dx}}{{x}^{\mathrm{3}} +\mathrm{1}} \\ $$$$=\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}}…

1-cosz-z-1-2-dz-z-1-2-cosz-z-1-2-dz-z-1-

Question Number 147213 by Mrsof last updated on 18/Jul/21 $$\left(\mathrm{1}\right)\int\:\frac{{cosz}}{\left({z}+\mathrm{1}\right)^{\mathrm{2}} }{dz}\:\:\:\:\:,\:\:\mid{z}\mid=\mathrm{1} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{{cosz}}{\left({z}−\mathrm{1}\right)^{\mathrm{2}} }{dz}\:\:\:\:\:,\mid{z}\mid=\mathrm{1} \\ $$ Answered by mathmax by abdo last updated…

8-4-2-1-

Question Number 81595 by zainal tanjung last updated on 14/Feb/20 $$\mathrm{8}+\mathrm{4}+\mathrm{2}+\mathrm{1}+…..\infty= \\ $$ Commented by Tony Lin last updated on 14/Feb/20 $$\mathrm{8}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}+\centerdot\centerdot\centerdot\right) \\ $$$$=\mathrm{8}×\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}} \\…

pleaae-there-is-challenge-to-this-question-as-to-whether-the-answer-is-43-6-OR-1187-42-please-help-Question-simplify-37-1-2-5-9-of-4-7-1-5-80-1-3-the-same-questio

Question Number 147115 by otchereabdullai@gmail.com last updated on 18/Jul/21 $$\mathrm{pleaae}\:\mathrm{there}\:\mathrm{is}\:\mathrm{challenge}\:\mathrm{to}\:\mathrm{this}\: \\ $$$$\mathrm{question}\:\mathrm{as}\:\mathrm{to}\:\mathrm{whether}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is} \\ $$$$\:\:\:\:\:\frac{\mathrm{43}}{\mathrm{6}}\:\:\:\mathrm{OR}\:\:\:−\frac{\mathrm{1187}}{\mathrm{42}}\:\:\mathrm{please}\:\mathrm{help} \\ $$$$\mathrm{Question}\: \\ $$$$\mathrm{simplify}\:\:\mathrm{37}\frac{\mathrm{1}}{\mathrm{2}}\:\boldsymbol{\div}\:\frac{\mathrm{5}}{\mathrm{9}}\:\mathrm{of}\:\left(\frac{\mathrm{4}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{5}}\right)−\mathrm{80}\frac{\mathrm{1}}{\mathrm{3}}. \\ $$$$\:\mathrm{the}\:\mathrm{same}\:\mathrm{question}\:\mathrm{but}\:\mathrm{different}\: \\ $$$$\mathrm{answer}\:\mathrm{from}\:\mathrm{different}\:\mathrm{books} \\ $$ Terms…

Question-147091

Question Number 147091 by aliibrahim1 last updated on 17/Jul/21 Answered by Olaf_Thorendsen last updated on 18/Jul/21 $${f}\left({x},{y}+{z}\right)\:=\:{f}\left({x},{y}\right){f}\left({x},{z}\right) \\ $$$${y}\:=\:{z} \\ $$$${f}\left({x},\mathrm{2}{y}\right)\:=\:{f}\left({x},{y}\right){f}\left({x},{y}\right)\:=\:{f}^{\mathrm{2}} \left({x},{y}\right) \\ $$$$\Rightarrow\:{f}\left({x},\mathrm{2}^{{n}} {y}\right)\:=\:{f}^{\mathrm{2}^{{n}}…

Two-horses-pull-horizontally-on-ropes-attached-to-a-stump-The-two-forces-F-and-T-that-they-applied-to-the-stump-are-such-that-the-resultant-R-has-a-magnitude-equal-to-F-and-makes-an-angle-of-90-with-

Question Number 16015 by chux last updated on 16/Jun/17 $$\mathrm{Two}\:\mathrm{horses}\:\mathrm{pull}\:\mathrm{horizontally}\:\mathrm{on} \\ $$$$\mathrm{ropes}\:\mathrm{attached}\:\mathrm{to}\:\mathrm{a}\:\mathrm{stump}.\mathrm{The} \\ $$$$\mathrm{two}\:\mathrm{forces}\:\mathrm{F}\:\mathrm{and}\:\mathrm{T}\:\mathrm{that}\:\mathrm{they} \\ $$$$\mathrm{applied}\:\mathrm{to}\:\mathrm{the}\:\mathrm{stump}\:\mathrm{are}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{resultant}\:\mathrm{R}\:\mathrm{has}\:\mathrm{a}\:\mathrm{magnitude} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{F}\:\mathrm{and}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of} \\ $$$$\mathrm{90}°\:\mathrm{with}\:\mathrm{F}.\mathrm{Let}\:\mathrm{F}=\mathrm{1300N}\:\mathrm{and}\: \\ $$$$\mathrm{R}=\mathrm{1300N}.\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{T}. \\…

prove-that-when-light-travels-through-a-triangular-glass-prism-of-angle-A-the-refractive-index-n-is-given-by-n-sin-A-D-min-2-sin-A-2-

Question Number 16012 by chux last updated on 16/Jun/17 $$\mathrm{prove}\:\mathrm{that}\:\mathrm{when}\:\mathrm{light}\:\mathrm{travels}\: \\ $$$$\mathrm{through}\:\mathrm{a}\:\mathrm{triangular}\:\mathrm{glass}\:\mathrm{prism}\: \\ $$$$\mathrm{of}\:\mathrm{angle}\:\mathrm{A} \\ $$$$\mathrm{the}\:\mathrm{refractive}\:\mathrm{index}\:\left(\mathrm{n}\right)\:\mathrm{is}\:\mathrm{given} \\ $$$$\mathrm{by} \\ $$$$\mathrm{n}=\mathrm{sin}\:\left(\frac{\mathrm{A}+\mathrm{D}_{\mathrm{min}} }{\mathrm{2}}\right)/\mathrm{sin}\:\left(\frac{\mathrm{A}}{\mathrm{2}}\right) \\ $$ Commented by…