Menu Close

Category: None

Given-4-x-4-x-2-2-x-2-2-x-7-0-x-gt-0-find-2-x-2-x-if-x-pi-6-0-then-minimum-value-of-function-f-x-cot-x-pi-3-tan-2pi-3-x-when-x-

Question Number 146838 by bobhans last updated on 16/Jul/21 $$\mathrm{Given}\:\mathrm{4}^{\mathrm{x}} +\mathrm{4}^{−\mathrm{x}} −\mathrm{2}^{\mathrm{2}−\mathrm{x}} +\mathrm{2}^{\mathrm{2}+\mathrm{x}} −\mathrm{7}=\mathrm{0}\:,\mathrm{x}>\mathrm{0} \\ $$$$\:\mathrm{find}\:\mathrm{2}^{\mathrm{x}} +\mathrm{2}^{−\mathrm{x}} . \\ $$$$\: \\ $$$$\:\mathrm{if}\:\mathrm{x}\in\left[\:−\frac{\pi}{\mathrm{6}},\mathrm{0}\:\right]\:\mathrm{then}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{cot}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{3}}\right)−\mathrm{tan}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}−\mathrm{x}\right)\: \\…

p-is-a-point-inside-onside-outside-of-equilateral-triangle-find-side-of-triangle-if-distance-of-p-from-vertices-of-triangle-be-equail-to-5-7-11-study-each-conditions-separately-find-side-of-A

Question Number 81267 by behi83417@gmail.com last updated on 10/Feb/20 $$\boldsymbol{\mathrm{p}},\mathrm{is}\:\mathrm{a}\:\mathrm{point},\boldsymbol{\mathrm{inside}}\:,\boldsymbol{\mathrm{onside}}\:,\boldsymbol{\mathrm{outside}}\:\mathrm{of} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}.\mathrm{find}\:\mathrm{side}\:\mathrm{of}\:\mathrm{triangle} \\ $$$$\mathrm{if}\:\mathrm{distance}\:\mathrm{of}\::\boldsymbol{\mathrm{p}}\:\mathrm{from}\:\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{triangle} \\ $$$$\mathrm{be}\:\mathrm{equail}\:\mathrm{to}:\:\mathrm{5},\mathrm{7},\mathrm{11}. \\ $$$$\left(\mathrm{study}\:\mathrm{each}\:\mathrm{conditions}\:\mathrm{separately}\right). \\ $$$$\mathrm{find}\:\mathrm{side}\:\mathrm{of}\:\mathrm{ABC}\:\mathrm{and}\:\mathrm{p}_{\mathrm{1}} \mathrm{p}_{\mathrm{2}} \mathrm{p}_{\mathrm{3}} \:\mathrm{in}\:\mathrm{a}\: \\ $$$$\mathrm{special}\:\mathrm{case}\:\mathrm{that}:\begin{cases}{\mathrm{Ap}_{\mathrm{1}}…

n-2-u-n-k-2-n-cos-pi-2-k-et-v-n-u-n-sin-pi-2-n-convergence-nature-sens-of-variations-and-adjantes-u-n-and-v-n-help-me-please-

Question Number 146793 by KONE last updated on 15/Jul/21 $$\forall{n}\geqslant\mathrm{2},\:{u}_{{n}} =\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}^{{k}} }\right)\:{et}\:{v}_{{n}} ={u}_{{n}} \mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right) \\ $$$${convergence},\:{nature},\:{sens}\:{of}\:{variations}\:{and}\:{adjantes}? \\ $$$${u}_{{n}} \:{and}\:{v}_{{n}} \\ $$$${help}\:{me}\:{please} \\…

If-z-cos-i-sin-prove-that-cos-6-1-32-cos-6-6cos-4-15cos-2-10-Hence-or-otherwise-find-the-value-of-0-a-a-2-x-2-5-dx-

Question Number 146772 by ZiYangLee last updated on 15/Jul/21 $$\mathrm{If}\:{z}=\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta,\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{cos}^{\mathrm{6}} \theta=\frac{\mathrm{1}}{\mathrm{32}}\left(\mathrm{cos}\:\mathrm{6}\theta+\mathrm{6cos}\:\mathrm{4}\theta+\mathrm{15cos}\:\mathrm{2}\theta+\mathrm{10}\right). \\ $$$$\mathrm{Hence}\:\mathrm{or}\:\mathrm{otherwise},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:{a}} \sqrt{\left({a}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)^{\mathrm{5}} }\:{dx}. \\ $$ Answered…

Given-that-y-4y-3y-0-y-0-0-y-0-2-find-y-ln-2-

Question Number 146771 by ZiYangLee last updated on 15/Jul/21 $$\mathrm{Given}\:\mathrm{that}\:{y}''−\mathrm{4}{y}'+\mathrm{3}{y}=\mathrm{0},\:{y}\left(\mathrm{0}\right)=\mathrm{0},\:{y}'\left(\mathrm{0}\right)=\mathrm{2}, \\ $$$$\mathrm{find}\:{y}\left(\mathrm{ln}\:\mathrm{2}\right). \\ $$ Answered by mathmax by abdo last updated on 15/Jul/21 $$\rightarrow\mathrm{r}^{\mathrm{2}} −\mathrm{4r}+\mathrm{3}=\mathrm{0}\:\rightarrow\Delta^{'}…

d-dx-x-and-d-dx-1-2-3-x-

Question Number 81226 by 20092104 last updated on 10/Feb/20 $$\frac{{d}}{{dx}}\left({x}!\right)\:{and}\:\frac{{d}}{{dx}}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{x}\right) \\ $$ Answered by MJS last updated on 10/Feb/20 $$\frac{{d}}{{dx}}\left[{x}!\right]\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}\:\mathrm{because}\:{x}!\:\mathrm{is}\:\mathrm{not}\:\mathrm{continuous} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{x}=\frac{{x}\left({x}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\frac{{d}}{{dx}}\left[\frac{{x}\left({x}+\mathrm{1}\right)}{\mathrm{2}}\right]={x}+\frac{\mathrm{1}}{\mathrm{2}} \\…

Solve-the-partial-defferintial-equation-u-t-a-2-u-xx-0-lt-x-lt-L-t-gt-0-u-0-t-0-and-u-L-t-0-and-u-x-x-0-f-x-

Question Number 146761 by tabata last updated on 15/Jul/21 $${Solve}\:{the}\:{partial}\:{defferintial}\:{equation} \\ $$$${u}_{{t}} ={a}^{\mathrm{2}} {u}_{{xx}} \:\:\:,\mathrm{0}<{x}<{L}\:,{t}>\mathrm{0} \\ $$$$ \\ $$$${u}\left(\mathrm{0},{t}\right)=\mathrm{0}\:\:{and}\:{u}\left({L},{t}\right)=\mathrm{0}\:\:{and}\:{u}_{{x}} \left({x},\mathrm{0}\right)={f}\left({x}\right) \\ $$ Commented by tabata…