Question Number 146758 by tabata last updated on 15/Jul/21 $${find}\:{forier}\:{series}\:{to}\:{half}\:{rang}\:{of}\: \\ $$$${f}\left({x}\right)={sinx}\:\:,\mathrm{0}<{x}<\pi\:{and}\:{prove}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Answered by Olaf_Thorendsen last updated on…
Question Number 81217 by M±th+et£s last updated on 10/Feb/20 Answered by mind is power last updated on 10/Feb/20 $${i}\:{will}\:{poste}\:{all}\:{solution}\:{later}! \\ $$$${for}\:\mathrm{2}{nd}\:{Somme}\:{mistacks} \\ $$$${i}\:{found} \\ $$$${f}\left({x}\right)=\int\frac{\sqrt{{tan}\left(\mathrm{2}{x}\right)}}{{sin}\left({x}\right)}{dx}=\mathrm{2}\sqrt{\mathrm{2}.{tan}\left({x}\right)}.\:\:\:\:_{\mathrm{2}}…
Question Number 146722 by SOMEDAVONG last updated on 15/Jul/21 $$\mathrm{D}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}−\mathrm{1}}\left[\frac{\mathrm{sin}\frac{\mathrm{88}}{\mathrm{n}}}{\mathrm{1}+\mathrm{2}}\:+\:\frac{\mathrm{sin}\frac{\mathrm{88}}{\mathrm{n}}}{\mathrm{1}+\mathrm{2}+\mathrm{3}}\:+\:…+\:\frac{\mathrm{sin}\frac{\mathrm{88}}{\mathrm{n}}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{n}}\right] \\ $$ Answered by Olaf_Thorendsen last updated on 15/Jul/21 $$\mathrm{S}_{{n}} \:=\:\frac{{n}^{\mathrm{2}} }{{n}−\mathrm{1}}\left[\underset{{k}=\mathrm{2}} {\overset{{n}}…
Question Number 146702 by faysal last updated on 13/Nov/23 Answered by Olaf_Thorendsen last updated on 15/Jul/21 $$ \\ $$$${ne}^{{i}\theta} \:=\:\frac{\mathrm{3}+\mathrm{3}{i}}{\mathrm{2}+\mathrm{3}{i}}+\frac{\mathrm{1}+\mathrm{5}{i}}{\mathrm{1}−\mathrm{2}{i}} \\ $$$${ne}^{{i}\theta} \:=\:\frac{\mathrm{3}\left(\mathrm{1}+{i}\right)\left(\mathrm{2}−\mathrm{3}{i}\right)}{\left(\mathrm{2}+\mathrm{3}{i}\right)\left(\mathrm{2}−\mathrm{3}{i}\right)}+\frac{\left(\mathrm{1}+\mathrm{5}{i}\right)\left(\mathrm{1}+\mathrm{2}{i}\right)}{\left(\mathrm{1}−\mathrm{2}{i}\right)\left(\mathrm{1}+\mathrm{2}{i}\right)} \\ $$$${ne}^{{i}\theta}…
Question Number 146689 by naka3546 last updated on 15/Jul/21 $$\int\:\:\frac{−\mathrm{3}{x}+\mathrm{5}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{10}{x}\right)^{\mathrm{2}} }}\:\:{dx}\:\:=\:\:\:…\:\:? \\ $$$${Solve}\:\:{it}\:\:{without}\:\:{substitution}\:\:{method}. \\ $$ Answered by Ar Brandon last updated on 15/Jul/21 $$\mathcal{I}=\int\frac{−\mathrm{3x}+\mathrm{5}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{3x}^{\mathrm{2}}…
Question Number 81134 by 20092104 last updated on 09/Feb/20 $${prove}\:{A}×{B}\neq{B}×{A} \\ $$$${with}\:{A}\:{and}\:{B}\:{are}\:{matrices} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 81133 by 1406 last updated on 09/Feb/20 $${find}\:{this}\: \\ $$$$\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} {x}\sqrt[{\mathrm{7}}]{{cot}^{\mathrm{4}} {x}}}{dx} \\ $$ Commented by jagoll last updated on 10/Feb/20 $$\int\:\frac{{csc}^{\mathrm{2}} {x}\:{dx}}{\:\sqrt[{\mathrm{7}\:}]{\mathrm{cot}\:^{\mathrm{4}}…
Question Number 81130 by 20092104 last updated on 09/Feb/20 $$\zeta\left({s}\right)=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 81123 by M±th+et£s last updated on 09/Feb/20 Commented by mr W last updated on 09/Feb/20 $${let}\:{z}={x}+{yi} \\ $$$$\mid{z}\mid=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$${let}\:{P}=\mid{z}\mid^{\mathrm{2}} ={x}^{\mathrm{2}}…
Question Number 15561 by Mr easymsn last updated on 11/Jun/17 Commented by Mr easymsn last updated on 11/Jun/17 $${plz}\:{i}\:{know}\:{the}\:{ans}\:{is}\:\mathrm{2}{and}\:\mathrm{3}\:{but}\:{i}\:{just} \\ $$$${need}\:{ur}\:{workings} \\ $$$$ \\ $$…