Menu Close

Category: None

Question-146529

Question Number 146529 by 0731619 last updated on 13/Jul/21 Answered by Olaf_Thorendsen last updated on 14/Jul/21 $$\mathrm{Let}\:{x}\:=\:\mathrm{5}+\epsilon \\ $$$$\frac{{x}!!!−\mathrm{10}}{{x}−\mathrm{5}}\:=\:\frac{\left(\mathrm{5}+\epsilon\right)\left(\mathrm{2}+\epsilon\right)−\mathrm{10}}{\mathrm{5}+\epsilon−\mathrm{5}} \\ $$$$=\:\frac{\mathrm{7}\epsilon+\epsilon^{\mathrm{2}} }{\epsilon}\:\underset{\epsilon\rightarrow\mathrm{0}} {\sim}\mathrm{7} \\ $$…

Question-146528

Question Number 146528 by 0731619 last updated on 13/Jul/21 Answered by Olaf_Thorendsen last updated on 14/Jul/21 $$\mathrm{Let}\:{x}\:=\:\mathrm{6}+\epsilon \\ $$$$\frac{{x}!!−\mathrm{48}}{\mathrm{6}−\sqrt{\mathrm{6}{x}}}\:=\:\frac{\left(\mathrm{6}+\epsilon\right)\left(\mathrm{4}+\epsilon\right)\left(\mathrm{2}+\epsilon\right)−\mathrm{48}}{\mathrm{6}−\sqrt{\mathrm{6}\left(\mathrm{6}+\epsilon\right)}} \\ $$$$=\:\frac{\mathrm{44}\epsilon+\mathrm{12}\epsilon^{\mathrm{2}} +\epsilon^{\mathrm{3}} }{\mathrm{6}−\mathrm{6}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}.\frac{\epsilon}{\mathrm{6}}\right)}\:\underset{\epsilon\rightarrow\mathrm{0}} {\sim}\:−\mathrm{88} \\…

Find-equation-of-a-plane-passing-through-the-points-x-1-y-1-z-1-x-2-y-2-z-2-and-perpendicular-to-the-plane-ax-by-cz-d-

Question Number 80943 by Kunal12588 last updated on 08/Feb/20 $$\mathrm{Find}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{plane}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{the} \\ $$$$\mathrm{points}\:\left({x}_{\mathrm{1}} ,\:{y}_{\mathrm{1}} ,\:{z}_{\mathrm{1}} \right),\:\left({x}_{\mathrm{2}} ,\:{y}_{\mathrm{2}} ,\:{z}_{\mathrm{2}} \right)\:\mathrm{and}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{plane}\:{ax}+{by}+{cz}={d} \\ $$ Answered by mr…

i-i-

Question Number 80926 by 20092104 last updated on 08/Feb/20 $${i}^{{i}} \\ $$ Commented by mr W last updated on 08/Feb/20 $${i}=\mathrm{cos}\:\frac{\pi}{\mathrm{2}}+{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{2}}={e}^{{i}\frac{\pi}{\mathrm{2}}} \\ $$$${i}^{{i}} =\left({e}^{{i}\frac{\pi}{\mathrm{2}}} \right)^{{i}}…

Question-80879

Question Number 80879 by naka3546 last updated on 07/Feb/20 Commented by mr W last updated on 07/Feb/20 $${i}\:{think}\:{we}\:{can}\:{get}\:{it}\:{only}\:{using} \\ $$$${calculator}.\: \\ $$$${it}\:{is}\:{the}\:{same}\:{as}\:{to}\:{find}\:{the}\:{integer}\: \\ $$$${part}\:{of} \\…

0-pi-1-1-cos-2-x-dx-

Question Number 146371 by lapache last updated on 13/Jul/21 $$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{1}}{\mathrm{1}+{cos}^{\mathrm{2}} {x}}{dx}=……??? \\ $$ Answered by gsk2684 last updated on 13/Jul/21 $${let}\:{I}=\underset{\mathrm{0}} {\overset{\Pi} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}}…