Question Number 80823 by M±th+et£s last updated on 06/Feb/20 $${show}\:{that}\: \\ $$$$\underset{{x}\rightarrow\infty} {{lim}}\:{H}_{{n}} =\mathrm{2}{F}_{\mathrm{1}} \left(\mathrm{1},\mathrm{1};\mathrm{2},\mathrm{1}\right) \\ $$$$ \\ $$$${ln}\left(\mathrm{4}\right)−\mathrm{2}{ln}\left(\mathrm{3}\right)=\mathrm{2}{F}_{\mathrm{1}} \left(\mathrm{1},\mathrm{1};\mathrm{2};\frac{−\mathrm{1}}{\mathrm{2}}\right) \\ $$ Answered by ~blr237~…
Question Number 15288 by ajfour last updated on 09/Jun/17 Commented by ajfour last updated on 09/Jun/17 $$\:{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{5}+\left[{x}\right]=\mathrm{0} \\ $$$$\Rightarrow\:\left({x}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{4}−\left[{x}\right]\:. \\ $$ Terms of…
Question Number 146353 by apaku last updated on 13/Jul/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 146334 by tabata last updated on 12/Jul/21 Commented by tabata last updated on 12/Jul/21 $${help}\:{me}\:{sir}\:{questiin}\:\mathrm{1}\:{and}\:\mathrm{3} \\ $$ Answered by Olaf_Thorendsen last updated on…
Question Number 146325 by 7770 last updated on 12/Jul/21 $${Given}\:{that}\:\left({a}+{b}\right)=\sqrt{\mathrm{3}\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}} \\ $$$${and}\:\left({a}−{b}\right)=\sqrt{\mathrm{3}\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}} \\ $$$${Find} \\ $$$$\left({i}\right)\:{ab}\:\:\:\:\:\:\left({ii}\right)\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$ Answered by Ar Brandon last updated…
Question Number 80780 by naka3546 last updated on 06/Feb/20 $$\mathrm{2}\centerdot{m}^{{x}} \:+\:\mathrm{3}\centerdot{n}^{{y}} \:\:=\:\:\mathrm{18} \\ $$$${min}\left\{\:{m}^{{x}} \:\centerdot\:{n}^{{y}} \:\right\}\:=\:? \\ $$ Commented by naka3546 last updated on 06/Feb/20…
Question Number 15216 by Ruth1 last updated on 08/Jun/17 $$\left[\frac{\mathrm{z}−\mathrm{2}}{\mathrm{z}+\mathrm{2}}\right]=\mathrm{6} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 15217 by Mr Chheang Chantria last updated on 08/Jun/17 Answered by ajfour last updated on 08/Jun/17 $$\:\:\:\boldsymbol{{v}}=\boldsymbol{{ab}}^{\mathrm{2}} +\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{b}}+\boldsymbol{{ac}}+\boldsymbol{{bc}} \\ $$$$\:\:\:\boldsymbol{{v}}\:=\boldsymbol{{ab}}\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)+\boldsymbol{{c}}\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right) \\ $$$$\:\:\:\:\:\:=\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)\left(\boldsymbol{{ab}}+\boldsymbol{{c}}\right)\leqslant\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)\left[\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}}…
Question Number 15208 by arnabpapu550@gmail.com last updated on 08/Jun/17 Answered by ajfour last updated on 08/Jun/17 $$\frac{\mathrm{5}}{\mathrm{4}}{C}\:. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 146250 by gsk2684 last updated on 12/Jul/21 $${I}_{{k}} =\underset{\mathrm{0}} {\overset{{k}\Pi} {\int}}{e}^{{x}^{\mathrm{2}} } \mathrm{sin}\:{x}\:{dx}\:{then}\:{find}\:{relation}\: \\ $$$${between}\:{I}_{\mathrm{1}} ,{I}_{\mathrm{2}} ,{I}_{\mathrm{3}} \\ $$ Commented by gsk2684 last…