Menu Close

Category: None

Question-14719

Question Number 14719 by Abbas-Nahi last updated on 03/Jun/17 Commented by Abbas-Nahi last updated on 03/Jun/17 $${Is}\:{the}\:{solution}\:{possible}\:{mathmatically} \\ $$$${orNOT}\:{and}\:{whether}\:{it}\:{is}\:{logical}\:{or}\:{not} \\ $$$$ \\ $$ Commented by…

Question-145783

Question Number 145783 by SOMEDAVONG last updated on 08/Jul/21 Answered by mathmax by abdo last updated on 08/Jul/21 $$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\left\{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}\right)\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{n}}\right)…\left(\mathrm{1}+\frac{\mathrm{n}}{\mathrm{n}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} \Rightarrow\mathrm{logu}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{n}}\mathrm{log}\left(\prod_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\right)\:=\frac{\mathrm{1}}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}}…

Question-145773

Question Number 145773 by help last updated on 07/Jul/21 Answered by mathmax by abdo last updated on 08/Jul/21 $$\rightarrow\mathrm{4r}^{\mathrm{2}} \:+\mathrm{24r}+\mathrm{37}=\mathrm{0} \\ $$$$\Delta^{'} \:=\mathrm{12}^{\mathrm{2}} −\mathrm{4}×\mathrm{37}\:=\mathrm{144}−\mathrm{148}=−\mathrm{4}\:\Rightarrow \\…

can-we-use-the-pearson-s-correlation-and-chi-square-test-for-hypothesis-interchangably-both-test-is-used-to-find-significant-relationship-between-two-variables-

Question Number 145716 by learner001 last updated on 07/Jul/21 $${can}\:{we}\:{use}\:{the}\:{pearson}'{s}\:{correlation}\:{and}\:{chi}−{square} \\ $$$${test}\:{for}\:{hypothesis}\:{interchangably}? \\ $$$${both}\:{test}\:{is}\:{used}\:{to}\:{find}\:{significant}\:{relationship} \\ $$$${between}\:{two}\:{variables}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Two-system-of-rectangular-axes-have-the-same-origin-If-a-plane-cuts-them-at-distance-a-b-c-and-p-q-r-respectively-then-prove-with-the-help-of-an-appropriate-diagram-that-1-a-2-1-b-2-

Question Number 80146 by Khyati last updated on 31/Jan/20 $${Two}\:{system}\:{of}\:{rectangular}\:{axes}\:{have} \\ $$$${the}\:{same}\:{origin}.\:{If}\:{a}\:{plane}\:{cuts}\:{them} \\ $$$${at}\:{distance}\:{a},\:{b},\:{c}\:{and}\:{p},\:{q},\:{r} \\ $$$${respectively},\:{then}\:{prove}\:{with}\:{the}\:{help} \\ $$$${of}\:{an}\:{appropriate}\:{diagram}\:{that}\:: \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{c}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{q}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{r}^{\mathrm{2}}…

Question-145665

Question Number 145665 by phally last updated on 07/Jul/21 Answered by puissant last updated on 07/Jul/21 $$\mathrm{k}'=\mathrm{2k}−\mathrm{1}\:\Rightarrow\:\mathrm{1}\leqslant\mathrm{k}'\leqslant\mathrm{2n}−\mathrm{1} \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \underset{\mathrm{k}'=\mathrm{1}} {\overset{\mathrm{2n}−\mathrm{1}} {\sum}}\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{k}'\:}\: \\ $$$$=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \underset{\mathrm{k}=\mathrm{1}}…

4cosy-3secy-2tany-Find-y-

Question Number 145654 by 7770 last updated on 07/Jul/21 $$\mathrm{4}{cosy}−\mathrm{3}{secy}=\mathrm{2}{tany} \\ $$$${Find}\:{y} \\ $$ Answered by john_santu last updated on 07/Jul/21 $$\:\:\mathrm{4cos}\:{y}−\frac{\mathrm{3}}{\mathrm{cos}\:{y}}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} {y}}}{\mathrm{cos}\:{y}} \\ $$$$\:\mathrm{cos}\:{y}\neq\:\mathrm{0}\:;\:{let}\:\mathrm{cos}\:{y}\:=\:{x}…

Question-145609

Question Number 145609 by Khalmohmmad last updated on 06/Jul/21 Commented by imjagoll last updated on 06/Jul/21 $$\:\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right) \\ $$$$\Rightarrow\left(\mathrm{g}\bullet\mathrm{f}\right)\left(\mathrm{x}\right)=\mathrm{x} \\ $$$$\Rightarrow\mathrm{f}\:'\left(\mathrm{x}\right).\mathrm{g}'\left(\mathrm{f}\left(\mathrm{x}\right)\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{g}\:'\left(\mathrm{f}\left(\mathrm{x}\right)\right)=\frac{\mathrm{1}}{\mathrm{f}\:'\left(\mathrm{x}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{8x}^{\mathrm{3}} +\mathrm{12x}^{\mathrm{2}}…