Menu Close

Category: None

Question-144517

Question Number 144517 by Khalmohmmad last updated on 26/Jun/21 Answered by som(math1967) last updated on 26/Jun/21 $${a}^{\mathrm{4}} +{b}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\mathrm{6}=\mathrm{0} \\ $$$$\left({a}^{\mathrm{2}}…

S-15-S-25-150-S-30-

Question Number 144515 by Khalmohmmad last updated on 26/Jun/21 $${S}_{\mathrm{15}} −{S}_{\mathrm{25}} =\mathrm{150} \\ $$$${S}_{\mathrm{30}} =? \\ $$ Commented by MJS_new last updated on 27/Jun/21 $$\mathrm{there}\:\mathrm{are}\:\mathrm{at}\:\mathrm{least}\:\mathrm{3}\:{S}\mathrm{s}:\:{S}_{\mathrm{15}}…

Question-144484

Question Number 144484 by phally last updated on 25/Jun/21 Answered by Olaf_Thorendsen last updated on 25/Jun/21 $$\mathrm{S}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{k}\left({k}+\mathrm{2}\right)}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{S}_{{n}} \:=\:\underset{{k}=\mathrm{2}} {\overset{{n}+\mathrm{1}}…

L-lim-x-pi-3-8cos-2-5x-2cosx-3-4cos-2-5x-8cosx-5-

Question Number 144473 by SOMEDAVONG last updated on 25/Jun/21 $$\mathrm{L}=\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {\mathrm{lim}}\frac{\mathrm{8cos}^{\mathrm{2}} \mathrm{5x}+\mathrm{2cosx}−\mathrm{3}}{\mathrm{4cos}^{\mathrm{2}} \mathrm{5x}+\mathrm{8cosx}−\mathrm{5}}\:\:=? \\ $$ Answered by mathmax by abdo last updated on 25/Jun/21 $$\mathrm{L}=\mathrm{lim}_{\mathrm{x}\rightarrow\frac{\pi}{\mathrm{3}}}…

A-1-7-1-7-1-7-

Question Number 144474 by SOMEDAVONG last updated on 26/Jun/21 $$\mathrm{A}=\sqrt{\mathrm{1}+\sqrt{\mathrm{7}+\sqrt{\mathrm{1}+\sqrt{\mathrm{7}+\sqrt{\mathrm{1}+\sqrt{\mathrm{7}+………..}}}}}} \\ $$ Answered by mr W last updated on 25/Jun/21 $${x}=\sqrt{\mathrm{1}+\sqrt{\mathrm{7}+{x}}} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} =\mathrm{7}+{x}…

For-two-real-and-distinct-solutions-to-y-3-y-ax-2-b-As-can-be-seen-from-graph-in-comment-below-if-a-gt-0-b-lt-3-while-if-a-lt-0-b-gt-3-

Question Number 13359 by ajfour last updated on 19/May/17 $${For}\:{two}\:{real}\:{and}\:{distinct} \\ $$$${solutions}\:{to}\:: \\ $$$${y}=\mathrm{3} \\ $$$${y}={ax}^{\mathrm{2}} +{b} \\ $$$${As}\:{can}\:{be}\:{seen}\:{from}\:{graph}\:{in} \\ $$$${comment}\:{below}, \\ $$$${if}\:{a}>\mathrm{0},\:{b}<\mathrm{3} \\ $$$${while}\:{if}\:\:{a}<\mathrm{0},\:{b}>\mathrm{3}\:.…