Menu Close

Category: None

the-angle-between-the-planes-r-2i-2j-2k-4-and-4x-2y-2z-15-is-

Question Number 78889 by gopikrishnan last updated on 21/Jan/20 $${the}\:{angle}\:{between}\:{the}\:{planes}\:{r}^{\rightarrow} .\left(\mathrm{2}{i}^{\rightarrow} +\mathrm{2}{j}^{\rightarrow} +\mathrm{2}{k}^{\rightarrow} \right)=\mathrm{4}\:{and}\:\mathrm{4}{x}−\mathrm{2}{y}+\mathrm{2}{z}=\mathrm{15}\:{is} \\ $$ Answered by Kunal12588 last updated on 21/Jan/20 $$\pi_{\mathrm{1}} \::\:\overset{\rightarrow}…

if-teta-tan-1-7-then-sec-teta-is-

Question Number 78887 by gopikrishnan last updated on 21/Jan/20 $${if}\:{teta}=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{7}\right)\:{then}\:\mathrm{sec}\:{teta}\:{is} \\ $$ Commented by jagoll last updated on 21/Jan/20 $$\mathrm{tan}\:\left(\theta\right)\:=\:\mathrm{7} \\ $$$$\mathrm{you}\:\mathrm{need}\:\mathrm{sec}\:\left(\theta\right) \\ $$$$\mathrm{sec}\:\left(\theta\right)=\:\pm\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}}…

The-number-of-real-numbers-in-0-2pi-satisfying-sin-1-x-2sin-2-x-1-0-is-

Question Number 78885 by gopikrishnan last updated on 21/Jan/20 $${The}\:{number}\:{of}\:{real}\:{numbers}\:{in}\:\left[\mathrm{0},\mathrm{2pi}\right]\:\mathrm{satisfying}\:\mathrm{sin}^{−\mathrm{1}} \mathrm{x}−\mathrm{2sin}^{\mathrm{2}} {x}+\mathrm{1}=\mathrm{0}\:{is} \\ $$ Answered by mind is power last updated on 21/Jan/20 $${sin}^{−} \left({x}\right)\:{is}\:{defind}\:{in}\left[−\mathrm{1},\mathrm{1}\right]\:{sir}…

A-lim-x-0-2x-4x-sint-t-dt-e-x-1-

Question Number 144403 by SOMEDAVONG last updated on 25/Jun/21 $$\mathrm{A}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\mathrm{2x}} ^{\mathrm{4x}} \frac{\mathrm{sint}}{\mathrm{t}}\mathrm{dt}}{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}\:=? \\ $$ Answered by imjagoll last updated on 25/Jun/21 $$\:\mathrm{A}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{sin}\:\mathrm{4x}}{\mathrm{4x}}\left(\mathrm{4}\right)−\frac{\mathrm{sin}\:\mathrm{2x}}{\mathrm{2x}}\left(\mathrm{2}\right)}{\mathrm{e}^{\mathrm{x}}…

L-lim-n-1-n-2-1-2-2-n-2-2-2-n-n-2-n-2-

Question Number 144396 by SOMEDAVONG last updated on 25/Jun/21 $$\mathrm{L}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }\:+\:\frac{\mathrm{2}}{\mathrm{n}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\:+..+\:\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} }\right)=? \\ $$ Commented by Canebulok last updated on…

L-lim-n-1-n-1-1-n-2-1-n-n-

Question Number 144394 by SOMEDAVONG last updated on 25/Jun/21 $$\mathrm{L}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}\:+…+\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{n}}\right)=? \\ $$ Commented by Canebulok last updated on 25/Jun/21 $$\: \\ $$$$\boldsymbol{{Solution}}: \\ $$$$\Rightarrow\:\underset{{n}\rightarrow+\infty}…

L-lim-n-n-n-2-n-3-n-4-n-n-1-n-2-n-3-n-4-n-n-n-

Question Number 144395 by SOMEDAVONG last updated on 25/Jun/21 $$\mathrm{L}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\frac{\mathrm{n}+\mathrm{n}^{\mathrm{2}} +\mathrm{n}^{\mathrm{3}} +\mathrm{n}^{\mathrm{4}} +…+\mathrm{n}^{\mathrm{n}} }{\mathrm{1}^{\mathrm{n}} +\mathrm{2}^{\mathrm{n}} +\mathrm{3}^{\mathrm{n}} +\mathrm{4}^{\mathrm{n}} +…+\mathrm{n}^{\mathrm{n}} }\:=? \\ $$ Terms of Service…