Menu Close

Category: None

L-lim-n-1-1-2-2-1-1-2-2-2n-1-n-2-2n-

Question Number 144380 by SOMEDAVONG last updated on 25/Jun/21 $$\mathrm{L}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{1}\right)}\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} +\mathrm{2n}}\:+…+\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{2n}}\right)=? \\ $$ Answered by mathmax by abdo last updated on 25/Jun/21…

A-log-2-9-2-1-log-2-log-2-9-7-1-log-4-7-

Question Number 144387 by SOMEDAVONG last updated on 25/Jun/21 $$\mathrm{A}=\left(\left(\mathrm{log}_{\mathrm{2}} \mathrm{9}\right)^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \left(\mathrm{log}_{\mathrm{2}} \mathrm{9}\right)}} ×\left(\sqrt{\mathrm{7}}\right)^{\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{4}} \mathrm{7}}} =? \\ $$ Answered by liberty last updated on…

f-x-1-x-x-6-1-27-f-x-

Question Number 78794 by naka3546 last updated on 20/Jan/20 $${f}\left({x}\:+\:\frac{\mathrm{1}}{{x}}\right)\:\:=\:\:\frac{{x}^{\mathrm{6}} \:+\:\mathrm{1}}{\mathrm{27}} \\ $$$${f}\left({x}\right)\:\:=\:\:… \\ $$ Answered by mr W last updated on 20/Jan/20 $${t}={x}+\frac{\mathrm{1}}{{x}} \\…

Give-f-x-x-5-5x-4-4x-3-3x-2-2x-1-amp-2-1-3-5-3-3-1-3-2-1-3-5-3-3-1-3-Find-f-

Question Number 144327 by SOMEDAVONG last updated on 24/Jun/21 $$\mathrm{Give}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{5}} −\mathrm{5x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1},\& \\ $$$$\alpha=\:\sqrt[{\mathrm{3}}]{\mathrm{2}}\left(\sqrt[{\mathrm{3}}]{\mathrm{5}+\mathrm{3}\sqrt{\mathrm{3}}}−\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{5}+\mathrm{3}\sqrt{\mathrm{3}}}}\right).\mathrm{Find}\:\mathrm{f}\left(\alpha\right)? \\ $$ Answered by Rasheed.Sindhi last updated on 25/Jun/21…

Question-13237

Question Number 13237 by Abbas-Nahi last updated on 17/May/17 Commented by RasheedSindhi last updated on 17/May/17 $$\frac{\mathrm{36}}{\left(\mathrm{n}+\mathrm{3}\right)!}−\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}−\frac{\mathrm{1}}{\mathrm{n}!}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{n}!}\left(\frac{\mathrm{36}}{\left(\mathrm{n}+\mathrm{3}\right)\left(\mathrm{n}+\mathrm{2}\right)\left(\mathrm{n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{n}!}=\mathrm{0}\:\mid\:\left(\frac{\mathrm{36}}{\left(\mathrm{n}+\mathrm{3}\right)\left(\mathrm{n}+\mathrm{2}\right)\left(\mathrm{n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{n}!}=\mathrm{0}\Rightarrow\mathrm{n}\rightarrow\infty \\ $$…